Supporting Information for:

Ion concentration polarization for pre-concentration of biological

samples without pH change

Youngkyu Cho,^a Junghyo Yoon,^b David Wonbin Lim,^b Jaehoon Kim,^b Jeong Hoon Lee,^c and Seok

Chung*a,b

^aDepartment of IT convergence, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul 02841,

Korea

^bSchool of Mechanical Engineering, Korea University, 145 Anam-ro, Seoungbuk-gu, Seoul

02841, Korea

^cDepartment of Electrical Engineering, Kwangwoon University, 20 Gwangun-ro, Nowon-gu,

Seoul 01897, Korea

*Author for correspondence : sidchung@korea.ac.kr

Contents:

Fig. S1 : Fabrication of the pre-concentration device.

Fig. S2 : Peak current in various electric fields and distribution of Ohmic, limiting and overlimiting ranges.

Table S1 : Comparing with previous pre-concentration methods using ion concentration polarization (ICP).

Table S2 : Comparison of Pressure driven flow and electroosmotic flow (EOF) in main channel Table S3 : Theoretical and experimental value chart after buffer drainage during single channel and dual channel concentrator operating and theoretical value equation.

Fig. S1 (a) Top view of a single channel pre-concentration device. (b) Fabrication process of filling and coating the Nafion in the device.

Fig S2. (a) Current pattern in each electric field during 60 seconds. Above number of graph mean electric field, V cm⁻¹. (b) Peak current in each electric field and distribution of Ohmic, limiting and over-limiting regimes.

Method		Initial volume	Concentration fold (time)	Measuring	Ref.
On chip analysis (straight micro- channel)	without ground buffer channel	0.054µL	~10 ³ (20minutes)	Fluorescence intensity	1
		0.08µL	~10 ⁶ (60minutes)	Fluorescence intensity	2
	with ground buffer channel	0.05µL	~10 ⁴ (60minutes)	Fluorescence intensity	3
		0.038µL	~10 ⁴ Fluorescence (5minutes) intensity		4
		2µL	~10 ⁴ Fluorescence (22minutes) intensity		5
		0.013µL	~500 (15minutes)	Fluorescence intensity	6
		<1µL	~100 (30minutes)	Fluorescence intensity	7
		< 1µL	~4*10 ³ (30minutes)	Fluorescence intensity	8
		0.042µL	~10 ³ (10minutes)	Fluorescence intensity	9
Extractable	Straight channel with ground buffer channel	0.05µL/min	~20 (200minutes)	Cell count	10,11
	Draining buffer concentration	100µL	~4 (15minutes)	ELISA	12
	Draining buffer concentration without pH change	40µL	~3.3 (15minutes)	ELISA	

Table S1. Comparing with previous pre-concentration methods using ion concentration polarization (ICP). (Gray row means our developed pre-concentration method. On chip analysis method's initial volume is calculated based concentrated channel specification since the volume isn't indicated in references.)

Pressure driven flow		Electoosmotic flow(EOF) ¹³		
Flow rate : 1ul/min		$V_{av} = -E\varepsilon_r \varepsilon_0 \frac{\zeta}{\mu}$		
Channel width (µm)	500	E : electric field (V cm ⁻¹)	20~100	
Channel height (µm)	170	\mathcal{E}_r : Dielectric constant of the medium (PBS)	8	
		ε_0 : The permittivity of the vacuum (C V ⁻¹ m ⁻¹)	8.85*10-12	
		ζ : Zeta potential at the shear plane (mV)	-25	
		μ : dynamic viscosity (N S m ⁻²)	0.001	
V_{av} (µm/s)	196.08	$V_{av}(\mu m/s)$	3.54~17.7 *10 ⁻³	

Table S2. Comparison of Pressure driven flow and electroosmotic flow (EOF) in main channel

		5min	10min	15min	20min
Single Channel (initial volume :	Drained volume (µL) (Theoretical value)	-	10	-	20
	Theoretical value (Fold)	-	1.33	-	2
40µL)	Experimental value (Fold)	-	1.3	-	2.1
Dual	Drained volume (µL) (Theoretical value)	10	20	30	-
Channel (initial volume :	Theoretical value (Fold)	1.3	2	4	-
40µL)	Experimental value (Fold)	1.1	2.1	3.3	-
Theoretical value equation	heoretical value equation $Theoretical value(Flod) = \frac{Initial volme}{Initial volme - Drained}$		lme uined volum	2	

Table S3. Theoretical and experimental value chart after buffer drainage during single channel and dual channel concentrator operating and theoretical value equation.

Reference

1 S. H. Ko, Y.-A. Song, S. J. Kim, M. Kim, J. Han and K. H. Kang, *Lab Chip*, 2012, **12**, 4472-4482.

2	M. Kim, M. Jia and T. Kim, Analyst, 2013, 138, 1370-1378.	
3	J. H. Lee, S. Chung, S. J. Kim and J. Han, Anal. Chem., 2005, 79, 13770–13773.	
4	J. H. Lee, YA. Song and J. Han, Lab Chip, 2008, 8, 596-601.	
5	J. K. Sung and J. Han, Anal. Chem., 2008, 80, 3507–3511.	
6	J. H. Lee and J. Han, Microfluid. Nanofluidics, 2010, 9, 973–979.	
7	V. Liu, YA. Song and J. Han, Lab Chip, 2010, 10, 1485–1490.	
8	S. H. Ko, S. J. Kim, L. F. Cheow, L. D. Li, K. H. Kang and J. Han, Lab Chip, 2011, 11,	
1351–1358.		
9	M. Kim and T. Kim, Analyst, 2013, 138, 6007–6015.	
10	R. Kwak, S. J. Kim and J. Han, Anal. Chem., 2011, 83, 7348-7355.	
11	S. J. Kim, S. H. Ko, K. H. Kang and J. Han, Nat. Nanotechnol., 2013, 8, 609-609.	
12	J. Yoon, Y. Cho, S. Han, C. S. Lim, J. H. Lee and S. Chung, Lab Chip, 2014, 14, 2778-	
2782.		
13	H. Mohamed, Blood Cell – An Overv. Stud. Hematol., 2012, 195–226.	