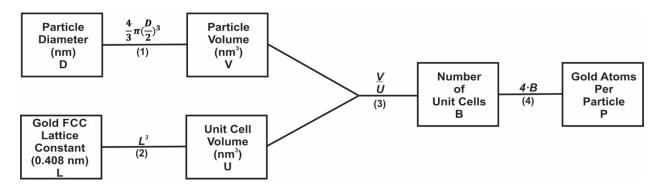
Supporting Information

Ligand density quantification on colloidal inorganic nanoparticles


Ashley M. Smith, Kathryn A. Johnston,[‡] Scott E. Crawford,[‡] Lauren E. Marbella, and Jill E. Millstone^{*}

Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA

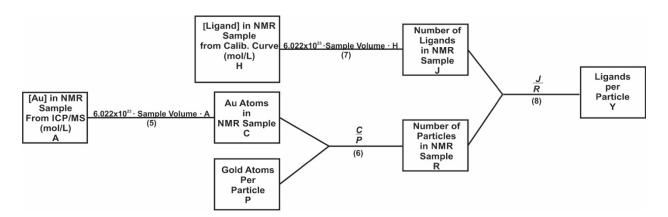

Table of Contents:

Figure S1. Flowchart Depicting the Process for Calculating the Number of Gold Atoms per Particle for Ligand Density Determination	P. S2	
		P. S2
		Figure S3. Flowchart Depicting the Process for Ligand Density Determination

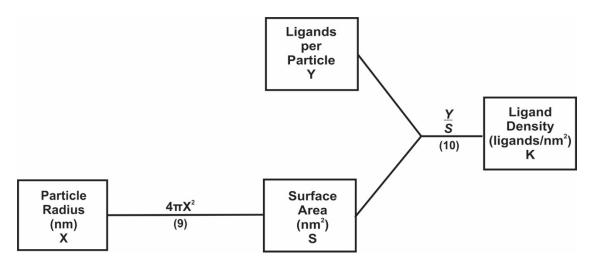

Below are flowcharts illustrating a sample calculation of nanoparticle ligand density, including the determination of both nanoparticle and ligand concentrations. Here, the flowchart uses the example of a gold nanoparticle core. However, the flowchart can easily be modified to treat nanoparticles of any composition provided the crystal structure and particle stoichiometry are known.

Figure S1. Flowchart depicting the process for calculating the number of gold atoms per particle for ligand density determination for pseudospherical particles.

Figure S2. Flowchart depicting the process for calculating the number of ligands per particle for ligand density determination for pseudospherical particles.

Figure S3. Flowchart depicting the process for ligand density determination for pseudospherical particles.