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1 Determination of effective partial specific volumes
The basic strategy pursued in our work is to calculate the effective partial specific volume for 

particles of known shape. We know that the particles are spherical in our case:
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dV,eff is the effective volume equivalent diameter of the particle including the solvation layer,  

dp,eff  is the diameter as given by Stokes’ equation and dh is the hydrodynamic diameter. From 

the Stokes–Einstein equation it follows:
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D is the diffusion coefficient of the particle, kB is the Boltzmann constant and η is the 

viscosity of the solvent. Together with the force balance of sedimentation this leads to:
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Vp,eff is the effective volume of the particle including all contributions from the shell, ρp,eff is 

the corresponding density and ρs is the density of the displaced solvent. These correlations 

allow calculating the effective partial specific volume of the solvated particle by using the 

sedimentation coefficient as well as the diameter of the effective particle determined by its 

diffusion coefficient. 

For the given case s and  were used for parametrization.  and s allow calculation of �̅�𝑝,𝑒𝑓𝑓 �̅�𝑝,𝑒𝑓𝑓

the corresponding D values via Equations 2 and 7. Both, s and D are then fitted using Lamm’s 

equation. It has to be taken into account that  includes the solvation layer. By definition, �̅�𝑝,𝑒𝑓𝑓

the f/f0 obtained by using  is always equal to (f/f0)shape and therefore equals unity for this �̅�𝑝,𝑒𝑓𝑓

given case of spherical particles because the volume expansion is not attributed to the 

frictional ratio but included in .�̅�𝑝,𝑒𝑓𝑓



2 Influence of shape anisotropy on partial specific volumes and shell 
thicknesses

The determination of effective partial specific volumes via the 2D approach as described in 

the previous section relies on the exact knowledge of the shape anisotropy. In case detailed 

knowledge on shape is not available, sedimentation and diffusion data derived by AUC could 

be misinterpreted. This will result in incorrect effective partial specific volumes and shell 

thicknesses. In the following section, possible errors will be estimated based on a case study.
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Figure S1.  Errors in the effective partial specific volumes and shell thicknesses for cubes, tetrahedrons and 
octahedrons as a function of the volume equivalent core diameters.



For the error calculations it was assumed that particles of fixed core density (5 g/cm3) carry a 

shell of certain thickness (0.5 nm, 1.0 nm or 2.0 nm). The density of the shell was further set 

to a fixed value of 1.0 g/cm3. Moreover, calculations were conducted for water at standard 

conditions. Next, size parameters, effective partial specific volumes as well as sedimentation 

and diffusion coefficients were calculated as a function of the volume equivalent core 

diameter for particles of cubical, tetrahedral and octahedral shape. The frictional ratios for the 

three different geometries were taken from Hubbard et al.[1]

Based on the sedimentation and diffusion coefficients, the effective partial specific volumes 

as would be obtained by a 2D analysis were calculated by assuming spherical shape. 

Moreover, the corresponding shell thicknesses were fitted. By comparing this data to the 

original data, the shape induced errors could be calculated. The errors for the effective partial 

specific volumes and the shell thicknesses are shown in Figure S1 for the three different 

shapes and varying original shell thicknesses. It was found that the errors always decrease for 

larger shell thicknesses as the shape induced error in the effective partial specific volume 

becomes less influencing. Moreover, the errors in the effective partial specific volumes and 

shell thicknesses were found to be the highest for the tetrahedron as it has the largest frictional 

ratio (1.17) and lowest sphericity (0.671). The sphericity can be defined as the surface area of 

a sphere of the same volume as the particle divided by the actual surface area of that particle. 

Smaller values indicate that the actual body deviates more significantly from a sphere. As a 

consequence, the relative volume of the shell compared to the core volume will increase with 

decreasing sphericity as the surface area to volume ratio is the lowest for the sphere. The cube 

as well as the octahedron has a frictional ratio of 1.06. However, the error in the shell 

thickness was found to be less for the octahedron as it has a larger sphericity (0.846) 

compared to the cube (0.806).



3 Simulated models #1 – #3

Figure S2.  Simulated 2D distributions for models #1 – #3 represented as sedimentation versus diffusion 
coefficients.

Figure S3.  Simulated 2D distributions for models #1 – #3 represented as sedimentation coefficients versus 
partial specific volumes.



Figure S4. Simulated SV data for model #1 with different rotor speeds and levels of random noise.

Figure S5. Simulated SV data for model #2 with different rotor speeds and levels of random noise.



Figure S6. Simulated SV data for model #3 with different rotor speeds and levels of random noise.

Figure S7. Simulated SV data for model #4.

4 Shell thickness function of model #4 

Figure S8.  Shell thickness in model #4 as a function of the core diameter.



5 Results of 1D c(s) analyses

Figure S9.  Original models #1 – #3 reduced to the s-dimension in logarithmic scaling (a) and results of the c(s) 
analyses for model #1 (b), model #2 (c), and model #3 (d). Data is shown for varying random noise and rotor 
speeds. The original model is shown in b) – d) by a red dashed line.



6 2D analyses of sedimentation and diffusion coefficients for model #1

Figure S10. Results of the 2DSA-MC, global speed 2DSA-MC and c(s,D) analyses shown from left to right for 
model #1. Results are shown for a rotor speed of 10,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S1.



Figure S11. Results of the 2DSA-MC, global speed 2DSA-MC and c(s,D) analyses shown from left to right for 
model #1. Results are shown for a rotor speed of 20,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S1.



Figure S12. Results of the 2DSA-MC, global speed 2DSA-MC and c(s,D) analyses shown from left to right for 
model #1. Results are shown for a rotor speed of 40,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S1.



7 2D analyses of sedimentation and diffusion coefficients for model #2

Figure S13. Results of the 2DSA-MC, global speed 2DSA-MC and c(s,D) analyses shown from left to right for 
model #2. Results are shown for a rotor speed of 10,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S1.



Figure S14. Results of the 2DSA-MC, global speed 2DSA-MC and c(s,D) analyses shown from left to right for 
model #2. Results are shown for a rotor speed of 20,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S1.



Figure S15. Results of the 2DSA-MC, global speed 2DSA-MC and c(s,D) analyses shown from left to right for 
model #2. Results are shown for a rotor speed of 40,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S1.



8 2D analyses of sedimentation and diffusion coefficients for model #3

Figure S16. Results of the 2DSA-MC with increasing random noise shown from left to right and increasing rotor 
speed top down for model #3. The results of the global speed 2DSA-MC are shown in the last row. c(s,D) 
evaluations could not be performed for model #3 due to significant peak clipping. The original simulated model 
to be reproduced (target) is shown in Figure S1.



9 2D analyses of sedimentation coefficients and partial specific volumes 
for model #1

Figure S17. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #1. Results are shown for a rotor speed of 10,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



Figure S18. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #1. Results are shown for a rotor speed of 20,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



Figure S19. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #1. Results are shown for a rotor speed of 40,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



10 2D analyses of sedimentation coefficients and partial specific volumes 
for model #2

Figure S20. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #2. Results are shown for a rotor speed of 10,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



Figure S21. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #2. Results are shown for a rotor speed of 20,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



Figure S22. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #2. Results are shown for a rotor speed of 40,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



11 2D analyses of sedimentation coefficients and partial specific volumes 
for model #3

Figure S23. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #3. Results are shown for a rotor speed of 10,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



Figure S24. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #3. Results are shown for a rotor speed of 20,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



Figure S25. Results of the 2DSA-CG-MC, global speed 2DSA-CG-MC and PCSA-TR shown from left to right 
for model #3. Results are shown for a rotor speed of 40,000 rpm (except the global speed approach which is a 
combined analysis at rotor speeds of 10,000 rpm, 20,000 rpm and 40,000 rpm). The random noise is varied top 
down. The original simulated model to be reproduced (target) is shown in Figure S2.



12 Type of random noise
For the simulated data, random noise proportional to the loading concentration was 
considered. An alternative would be to simulate random noise proportional to the local 
concentration. However, such a noise profile can also not be really reflective of the real 
situation, and in reality is somewhere in between our model and this alternative solution. This 
is easy to see if one scans a sample at zero concentration. The alternative solution would 
suggests that the noise at zero would be ideal, i.e., non-existent. This is clearly not the case. In 
fact, the baseline noise is not much lower than the noise at a slightly higher optical density, 
say 0.2 OD. 

For example, if we measure at 0.2 OD230 nm in our XL-A then the random noise RMSD is 
about 0.002 OD. If we measure a water channel with zero absorbance, the RMSD is about the 
same, maybe a little lower at 0.0019 OD. This tells us that a noise contribution based on the 
percentage of the total loading concentration is not too far off from reality. Once we go to 
higher concentrations, say 0.9 OD or 1.2 OD the situation is more like what the alternative 
solution suggests, and the RMSD goes to about 0.004 OD.

Furthermore, the actual noise clearly depends on the background absorbance of the buffer, the 
wavelength used, the general instrument condition, and condition of monochromator, cell 
windows, and other optical and electronic components, none of which are predictable nor 
constant, even within the same machine. For example, the emission intensity varies drastically 
with wavelength for the Xenon flash lamp used in the UV/Vis detector built into the XL-A, 
and electronic noise is always finite, and probably the strongest contributor to stochastic 
noise. In the UV/Vis detection optical system the observed random noise is a combination of 
lamp flash-to-flash intensity variation, a strong wavelength emission intensity dependence, 
and the dark current of the detector. Hence, random noise depends on the intensities and thus 
the wavelength used for data analysis. E.g., for high light intensities, there is almost no 
variation with the absorbance observable, at least up to a reasonable level (~ 1.0 OD).

These explanations unequivocally illustrate that it is impossible to exactly mimic the 
influence of random noise in simulated data. A simulation can only provide an estimate of 
what the impact might be in the analysis. Thus, we decided to provide a worst-case estimate 
for the studies discussed in this manuscript, which simulates the random noise based on the 
loading concentration. This allows us to assess the maximum effect of a certain noise level. 
Of course, the random noise will most likely decrease in reality in the progress of the 
experiment as the absorbance decreases when the analyte sediments. However, we believe 
that our procedure is a viable option, which allows us to evaluate the maximum impact of 
random noise during data analysis. 

To show that our worst-case approach is a reasonable procedure, we have performed a 
simulation based on the assumption that the random noise is proportional to the local 
concentration instead of the loading concentration. As can be seen in Figure S26, the 
difference to our noise simulation is either insignificant or the new analysis performs better, 
which is reasonable due to the overall lower noise values. Moreover, it proves that our 
original simulation is actually a worst-case scenario, which shows an upper limit of what can 
be expected when the noise is larger, and does not change our conclusions in any way.



Figure S26. Results of the PCSA-TR shown for model #2 for data simulated at increasing rotor speed from left 
to right. Data used for analysis shown in a) - c) were simulated with a random noise level of 2 % proportional to 
the loading concentration of 1.0 OD. Data used for analysis shown in d) - e) were simulated with a random noise 
level of 2 % proportional to the local concentration. For a rotor speed of 10,000 rpm, the smallest species cannot 
be well determined due to a lack of sedimentation information available, which holds true for both types of 
random noise.
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