Supplementary Information

Rational designed strategy to dispel mutual molestation of mercuric and ferric ions towards robust, pH-stable fluorescent carbon nanodots

Yang Liu,^a Yanan Liu,^a Jinpyo Lee,^a Joong Hee Lee,^a Mira Park $^{\ast b}$ and Hak Yong Kim $_{a,\,b}$

- a. Department of BIN Convergence Technology, Chonbuk National University, Jeonju, 561-756, South Korea
- b. Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756, South Korea

^{*} Corresponding author: wonderfulmira@jbnu.ac.kr (M. Park) ** Corresponding author: khy@jbnu.ac.kr (H. Kim)

Tel: +82-63-270-2351, Fax: +82-63-270-4249.

Fig. S1 (a) The optical absorption evolution of C-dots obtained at various CA/melamine mole ratio and (b) Quantum yields of C-dots as a function of Reaction time.

Fig. S2 (a) Photographs of the C-dots aqueous solution with different concentrations under natural light (top) and 365 nm UV light (down) illumination, and (b) their corresponding PL spectra.

Fig. S3 Relative fluorescence intensities (F/F_0) of the C-dots (0.05 mg mL⁻¹) treated with diverse metal ions (0.15 mM) in water.

Fig. S4 The PL intensity regeneration of (a) C-dots/Hg²⁺ quenched mixture recovered by SCN⁻ when the concentration increased from 0.2 mM to 3.0 mM, (b) C-dots/Fe³⁺ quenched mixture recovered by SCN⁻ when the concentration increased up to 4.0 mM; (c) C-dots/Fe³⁺ quenched mixture recovered by $P_3O_{10}^{5-}$ when the concentration increased from 0.05 mM to 0.5 mM, (d) C-dots/Hg²⁺ quenched mixture recovered by $P_3O_{10}^{5-}$ when the concentration increased from 0.05 mM to 0.5 mM.

Fig. S5 The PL intensity evolution of the C-dots when interfering with (a) $P_3O_{10}^{5-}$ up to 5.0 mM, (b) SCN⁻ up to 2.5 mM.

Fig. S6 (a) The PL spectra variation of the C-dots (0.05 mg mL⁻¹) towards titration of Hg²⁺ (0 - 0.2 mM); (b) The relationship between $F/F_0 - 1$ and Hg²⁺ concentration with the linear range from 0.0 to 5.0 μ M (inset). The quenching constant and LOD were calculated as 1.97×10^4 M⁻¹ and 0.80 μ M, respectively; (c) The PL spectra variation of the C-dots (0.05 mg mL⁻¹) towards titration of Fe³⁺ (0 - 0.15 mM); (d) The relationship between $F/F_0 - 1$ and Fe³⁺ concentration with the linear range from 0.0 to 5.0 μ M (inset). The quenching constant and limit of detection (LOD) were calculated as 1.30×10^4 M⁻¹ and 1.21μ M, respectively.

Fig. S7 PL and UV-vis spectra of the C-dots-SCN⁻ and C-dots-P₃O₁₀⁵⁻ system in the absence (black curve) and presence of 40 μ M (a) Hg²⁺ (magenta curve) or (b) Fe³⁺ (orange curve), respectively.

0				
Sources to Prepare C-dots	Probe Component	Analyte	Limit of Detection (LOD)	Reference
CA derived C-dots + Hydrazine	CDs/Cysteine	Fe ³⁺	90 nM	S1
Jinhua Bergamot	CDs/Tris-HCl	Fe ³⁺	0.075 μΜ	S2
СА	CDs/NaAc-HAc	Fe ³⁺	2.8 μΜ	S3
CA + Melamine	CDs-SCN-	Fe ³⁺	1.17 µM	This work
Pigeon Feathers	CDs/HEPES	Hg ²⁺	10.3 nM	S4
L-proline	CDs/gold nanoclusters	Hg ²⁺	28 nM	S 5
CA + Urea + L-Cysteine	CDs/SHPP	Hg ²⁺	2 μΜ	S 6
СА	CDs/PBS	Hg ²⁺	5.7 μM	S 3
CA + Melamine	CDs-P ₃ O ₁₀ ⁵⁻	Hg ²⁺	0.78 μM	This work

Table S1 Comparison of different probes based on the C-dots (CDs) system for the determination of Fe^{3+} or Hg^{2+} .

CA: citric acid; Tris-HCI: tris(hydroxymethyl)aminomethane hydrochloride buffer solution; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; SHPP: sodium hexametaphoshpate; PBS: Phosphate buffered saline.

Table S2 The lifetime decay data comparison of the C-dots, C-dots-SCN⁻ and C-dots- $P_3O_{10}^{5-}$ system in the absence and presence of 40 μ M Fe³⁺ or Hg²⁺.

Sample	τ(ns)	χ^2
C-dots	3.73	1.193
C-dots,+Fe ³⁺	3.72	1.215
C-dots,+Hg ²⁺	3.81	1.118
C-dots-SCN ⁻	3.71	1.153
C-dots-SCN ⁻ ,+Fe ³⁺	3.72	1.289
C-dots-P ₃ O ₁₀ ⁵⁻	3.79	1.156
C-dots-P ₃ O ₁₀ ⁵⁻ ,+Hg ²⁺	3.8	1.135

References

S1. J. Ju and W. Chen, Biosens. Bioelectron., 2014, 58, 219-225.

S2. J. Yu, N. Song, Y.-K. Zhang, S.-X. Zhong, A.-J. Wang and J. Chen, *Sensor Actuat B-Chem.*, 2015, **214**, 29-35.

S3. C. Li, W. Liu, Y. Ren, X. Sun, W. Pan, Jinping Wang. Sensor Actual B-Chem., 2017, **240**, 941–948.

S4. Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou and L. Chen, *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.*, 2016, **173**, 854-862.

S5. Y. Yan, H. Yu, K. Zhang, M. Sun, Y. Zhang, X. Wang and S. Wang, *Nano Research*, 2016, **9**, 2088-2096.

S6. L. Li, B. Yu and T. You, Biosens. Bioelectron., 2015, 74, 263-269.