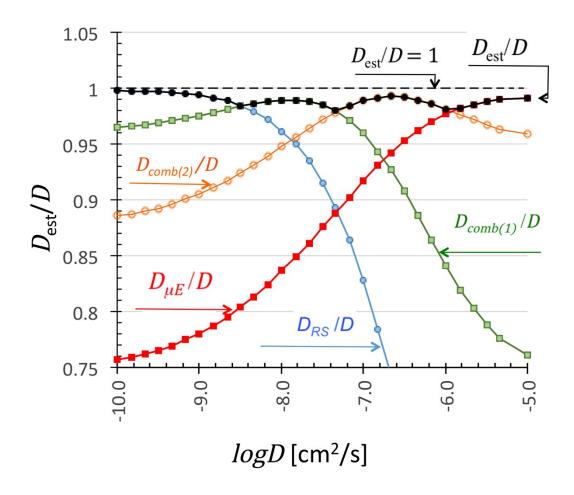
Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2017

Supporting information for publication VOLTAMMETRIC DETERMINATION OF DIFFUSION AND PARTITION COEFFICIENTS IN PLASTICIZED POLYMER MEMBRANES

James B. Sheppard, Bradley Hambly, Bradford Pendley, Erno Lindner*

Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152

^{*} Corresponding author, Phone: (901) 678-5641. Fax: (901) 678-5281. email: elindner@memphis.edu


Table-S1. Compilation of diffusion coefficients of ferrocene ($^{D_{Fc}}$) and ferrocene methanol ($^{D_{FcMeOH}}$) measured by voltammetry in various solvents in the presence of supporting electrolytes, and calculated by the Stokes-Einstein relationship, or published in the literature. (COV: coefficient of variation, N: number of measurements)

Solvent	Measured			Stokes-Einstein ^o			Published
	$D \text{ (cm}^2\text{/s)}$	N	COV (%)	D (cm ² /s)			
				no-slip	full-slip	slip (%)	
Water	7.5×10 ⁻⁶	19	2	7.4×10 ⁻⁶	1.11×10 ⁻⁵	4	$D_{\text{FcMeOH}} 7.6 \times 10^{-6} ^{1}$ $D_{\text{FcMeOH}} 7 \times 10^{-6} ^{2}$ $D_{\text{FcMeOH}} 6.1 \times 10^{-6} ^{3}$ $D_{\text{FcMeOH}} 7.8 \times 10^{-6} ^{4}$
Methanol	1.2×10 ⁻⁵	5	5	1.22×10 ⁻⁵	1.83×10 ⁻⁵	0	
Acetone	2.10×10 ⁻⁵	5	2	2.12×10 ⁻⁵	3.18×10 ⁻⁵	0	$D_{\text{Fc}} 2.40 \times 10^{-5} = D_{\text{Fc}} 2.76 \times 10^{-5} \Gamma$
Acetonitrile	1.97×10 ⁻⁵	6	1	1.78×10 ⁻⁵	2.67×10 ⁻⁵	22	$D_{\text{Fc}} 1.74 \times 10^{-5} =$ $D_{\text{Fc}} 2.17 \times 10^{-5} \Gamma$
DCM	1.76×10 ⁻⁵	9	4	1.59×10 ⁻⁵	2.39×10 ⁻⁵	21	$D_{\text{Fc}} 1.12 \times 10^{-5} = D_{\text{Fc}} 1.67 \times 10^{-5} \Gamma$
THF	1.61×10 ⁻⁵	8	1	1.43×10 ⁻⁵	2.14×10 ⁻⁵	26	
Octanol	1.2×10 ⁻⁶	5	4	9×10 ⁻⁷	1.3×10 ⁻⁶	75	
DOS	5.0×10 ⁻⁷	5	5	4×10 ⁻⁷	6×10-7	65	
oNPOE	6.0×10 ⁻⁷	10	5	5×10-7	7×10-7	65	

The calculated values correspond to no-slip (Slip = 0%) and full slip (Slip = 100%) conditions. The data in the column labeled as slip (%) are estimated percent slip values between analyte molecules and the solvent

^{= 273.15 °}K

Γ 298.15 °K

Figur

e S1: Ratios of the estimated diffusion coefficients to the true diffusion coefficient ($^{D_{est}/D}$) and the largest of the four estimates (\bullet). $^{D_{RS}}$ and $^{D_{\mu E}}$ were determined from the slopes (Eq. 5) and intercepts (Eq. 6) of $^{i}p(i_L)$ vs. $v^{1/2}$ plots constructed from simulated LSVs using D as diffusion coefficient, and $^{D_{comb}(1)}$ and $^{D_{comb}(2)}$ were calculated by Equations 7 and 8 in the main article, respectively. The horizontal dotted line at $^{D_{est}/D}=1$ represents perfect agreement between the estimated and the true diffusion coefficient.

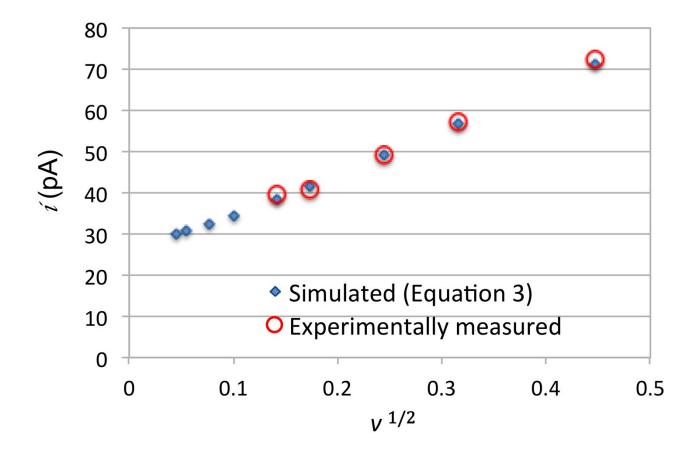


Figure S2: Demonstration of the agreement between $i_p(i_L)$ vs. $v^{1/2}$ plots measured experimentally and constructed from simulated LSVs. The experimental data points were collected by recording CVs of FcCOOH with the PEC in an oNPOE plasticized PVC membrane with 32% PVC content and 2.0 mM FcCOOH concentration.

REFERENCES

- 1. C. Amatore, N. Da Mota, C. Lemmer, C. Pebay, C. Sella and L. Thouin, *Anal. Chem.*, 2008, 80, 9483-9490.
- 2. C. Cannes, F. Kanoufi and A. J. Bard, J. Electroanal. Chem., 2003, 547, 83-91
- 3. P. Liljeroth, C. Johans, C. J. Slevin, B. M. Quinn and K. Kontturi, *Electrochemistry Communications*, 2002, 4, 67-71.
- 4. W. J. Miao, Z. F. Ding and A. J. Bard, *J. Phys. Chem. B*, 2002, 106, 1392-1398.