Assembly of BODIPY-carbazole Dye with Liposome to fabricate Fluorescent Nanoparticles for Lysosomal Bioimaging in Living Cells

Hai-juan Lv, Xiao-tai Zhang, Shu Wang and Guo-wen Xing

Contents

1. General Information S2
2. Synthesis of BCA, BCAS and FNPs S2
3. HR-SEM and Spectroscopic Properties S6
4. Cell Culture and Confocal Imaging S8
5. NMR Spectra for Compounds S10

1. General Information

All of the materials were purchased as reagent grade and used without further purification. DMF was vacuum distilled over calcium hydride $\left(\mathrm{CaH}_{2}\right) . \mathrm{CHCl}_{3}$ was redistilled. Reactions were monitored with analytical thin-layer chromatography (TLC) on silica gel F254 glass plates and visualized under UV light ($254 \mathrm{~nm} / 365 \mathrm{~nm}$). Flash column chromatography was performed on silica gel (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were taken on a Bruker Avanced III spectrometer with tetramethylsilane as an internal standard and chloroform $\left(\mathrm{CDCl}_{3}\right)$ as the solvent. High resolution electrospray ionization mass spectra (HRMS-ESI) were recorded with a Waters LCT Premier XE mass spectrometer. Absorption spectra were recorded by on a Shimadzu UV2600 spectrophotometer. Zeta potentials and particle sizes were performed using a Malvern nano zs 90 Zeta Potential Meter. Fluorescence microscopy photos were recorded by Olympus FV1200 confocal fluorescence microscopy. All cuvette experiments were carried out at room temperature.
2. Synthesis of BCA, BCAS and NPs

Scheme S1 Synthetic route of BCA and BCAS.

9-(4-bromophenyl)-9H-carbazole (1)

To a solution of 9H-carbazole ($800 \mathrm{mg}, 4.8 \mathrm{mmol}$) in DMF (10 mL), 1-bromo-4-iodobenzene $(1.765 \mathrm{~g}, 6.24 \mathrm{mmol})$ was added, followed by addition of $\mathrm{CuI}(274 \mathrm{mg}, 1.44 \mathrm{mmol})$. The reaction mixture was stirred in a $110^{\circ} \mathrm{C}$ of oil bath under argon for about 30 h until the starting material had been completely consumed as detected by TLC. The solution was then allowed to cool to room temperature, and the DMF was evaporated under vacuum. After the removal of the solvent, the mixture was purified by column chromatography (Hexanes/EtOAc $=150 / 1$) to give compound $1(1.299 \mathrm{~g}, 4.05 \mathrm{mmol}, 84 \%)$ as yellow solid; mp: 144-145 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ $(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, \mathrm{J}=13.5,4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-$ $7.28(\mathrm{td}, \mathrm{J}=7.3,1.32 \mathrm{~Hz}, 2 \mathrm{H})$.

9-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl)-9H-carbazole (2).

A Schlenk flask was charged with compound $1(600 \mathrm{mg}, 1.87 \mathrm{mmol})$, then bis(pinacolato)diboron ($522 \mathrm{mg}, 2.06 \mathrm{mmol}$), $\mathrm{PdCl}_{2} \cdot$ DPPF ($113 \mathrm{mg}, 0.14 \mathrm{mmol}$), KOAc (550 mg , 5.61 mmol) and dry 1, 4-dioxane (15 mL) were added to the flask under argon. The mixture was preactivated for 1 h under room temperature followed by immersing in an oil bath at $80^{\circ} \mathrm{C}$ for about 20 h until the starting material had completely disappeared as judged by TLC. The solvent was evaporated under reduced pressure and purified by column chromatography (Hexanes / $\mathrm{EtOAc}=200 / 1)$ to give compound $2(546.4 \mathrm{mg}, 1.48 \mathrm{mmol}, 80 \%)$ as pale yellow solid; mp : $173-174{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ $(\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H})$.

9-(4-azidophenyl)-9H-carbazole (3).

To a solution of compound $2(228 \mathrm{mg}, 0.617 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL}), \mathrm{NaN}_{3}(60.22 \mathrm{mg}$, $0.926 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2}(12.32 \mathrm{mg}, 0.0617 \mathrm{mmol})$ were added. The mixture was stirred in a $55^{\circ} \mathrm{C}$ of oil bath under air for about 3 h until the starting material had been completely consumed as detected by TLC. The crude yellow oil was then diluted with EtOAc (150 mL), washed with saturated NaCl solution, and dried with MgSO_{4}. After removal of the solvent, the mixture was purified by column chromatography (Hexanes/EtOAc $=150 / 1$) to give $3(126 \mathrm{mg}, 0.44 \mathrm{mmol}$, 80%) as a yellow crystals; mp: 111-112 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{td}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25$ ($\mathrm{m}, 4 \mathrm{H}$).

9-(4-azidophenyl)-9H-carbazole-3-carbaldehyde (4).

A Schlenk flask was charged with dry DMF $(5 \mathrm{~mL}), \mathrm{POCl}_{3}(5 \mathrm{~mL})$ was then dropping to the flask in ice bathe. The mixture was stirred for 20 min at $0{ }^{\circ} \mathrm{C}$ and for another 1 h under room temperature. Then $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and compound $3(254.19 \mathrm{mg}, 0.89 \mathrm{mmol})$ was added to reflux for about 10 h . The mixture was neutralized by NaOH solution in ice bath to $\mathrm{pH}=10$. Then the crude product was diluted with $\mathrm{DCM}(150 \mathrm{~mL})$, washed with saturated NaCl solution (30 mL), and dried with MgSO_{4}. After removal of the solvent by vacuum distillation, the mixture was purified by column chromatography (Hexanes/EtOAc $=50 / 1$) to give compound 4 ($234 \mathrm{mg}, 0.746$ mmol, 83%).Dark yellow crystals; mp: 131-132 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.13(\mathrm{~s}, 1 \mathrm{H})$, $8.68(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{dd}, \mathrm{J}=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.64,144.45,141.84,133.30,129.58,128.66,127.53,127.10,123.82,123.61$, 123.24, 121.35, 120.75, 120.64, 110.21, 109.91, 77.37, 77.05, 76.73. HRMS (ESI): m/zcalcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 313.1089$, found: 313.1095.

10-(9-(4-azidophenyl)-9H-carbazol-3-yl)-5,5-difluoro-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c: 2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (5)

To 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, compound $4(200 \mathrm{mg}, 0.62 \mathrm{mmol})$ was added, followed by the addition of the 2, 4-dimenthylpyrrole $(0.2 \mathrm{~mL}, 2.8 \mathrm{mmol})$ and trifluoroacetic acid $(0.1 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 5 h . Then DDQ ($175 \mathrm{mg}, 0.76 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15$ mL) was added and the reaction mixture was stirred at room temperature for another 30 min.Finally, triethylamine $(3 \mathrm{~mL})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ were added to the mixture in turn. The reaction mixture was further stirred at room temperature overnight. The crude product was washed with waterfor 3 times ($3 \times 30 \mathrm{~mL}$), and dried with MgSO_{4}. After removal of the solvent by vacuum distillation, the crude product was purified by column chromatography (Hexanes/EtOAc $=75 / 1$) to give compound $5(171.7 \mathrm{mg}, 0.32 \mathrm{mmol}, 52.14 \%)$ as orange solid; mp : $88-90^{\circ} \mathrm{C}$; 1 H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ $(\mathrm{dd}, \mathrm{J}=7.7,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=9.4,2.1$ $\mathrm{Hz}, 3 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) ; 13 \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.25,143.27$, $142.72,141.30,140.88,139.62,133.95,132.18,128.53,126.71,126.55,125.78,123.89,123.02$, $121.11,120.57,120.53,120.09,110.26,109.95,29.69,14.72,14.59 ; H R M S$ (ESI): m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{26} \mathrm{BF}_{2} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 531.2356, found: 531.2356.

BCA

To a mixture of water and $t-\mathrm{BuOH}(\mathrm{v} / \mathrm{v}=3: 1)$, compound $5(70 \mathrm{mg}, 0.132 \mathrm{mmol})$ and dimethylpropargylamine $(0.2 \mathrm{~mL}, 0.154 \mathrm{mmol})$ was added. Freshly prepared sodium ascorbate solution ($0.6 \mathrm{ml}, 0.2 \mathrm{~mol} / \mathrm{L}$) and CuSO_{4} solution ($1.2 \mathrm{ml}, 0.05 \mathrm{~mol} / \mathrm{L}$) was mixed rapidly, and then added to above mixture. The heterogeneous mixture was stirred overnight at $40{ }^{\circ} \mathrm{C}$. After completion of the reaction, the row product was washed with distilled water, extracted with DCM, and dried with MgSO_{4}. After removing the solvent with vacuum distillation, the mixture was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=40: 1\right)$ to give compound $\mathrm{BCA}(44.2 \mathrm{mg}$, $0.07 \mathrm{mmol}, 54.6 \%$) as orange solid; mp: $140-145{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}$ $=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{ddd}, \mathrm{J}=10.0,8.2,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 6 \mathrm{H}), 2.42$ $(\mathrm{s}, 6 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.33,143.23,142.52,141.00,140.56$, $137.61,132.14,128.31,126.95,126.91,125.97,124.17,123.25,122.07,121.15,120.94,120.68$, $120.22,110.23,109.92,14.73,14.59$; HRMS (ESI): m/z calcd for $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{BF}_{2} \mathrm{~N}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 614.3016, found: 614.3017.

BCAS

Compound BCA ($70 \mathrm{mg}, 0.114 \mathrm{mmol}$) and octadecyl bromide ($190 \mathrm{mg}, 0.57 \mathrm{mmol}$) was dissolved in 15 mL acetone solution. The mixture was activated at room temperature for about 3 h , and then refluxed until the starting material had been completely consumed as detected by TLC.After removal of the solvent under vacuum distillation, the mixture was purified by column chromatography $(\mathrm{DCM} / \mathrm{MeOH}=30 / 1)$ to give BCAS $(67.6 \mathrm{mg}, 0.07 \mathrm{mmol}, 63.2 \%)$ as orange solid; $\mathrm{mp}: 138-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{dd}, \mathrm{J}=8.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.10$
$(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.4,2 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 2 \mathrm{H}), 7.36-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 3.63-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 6 \mathrm{H}), 2.56(\mathrm{~s}, 6 \mathrm{H}), 1.94(\mathrm{~s}$, $2 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 30 \mathrm{H}), 0.87(\mathrm{t}, 1.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.25$, $143.22,142.46,140.83,140.39,138.21,136.69,135.09,132.08,128.20,127.32,126.94,126.92$, $125.94,124.18,123.23,122.21,121.12,120.97,120.63,120.16,110.21,109.86,65.31,57.95$, $50.79,31.86,29.64,29.59,29.53,29.40,29.32,29.29,29.14,26.26,22.92,22.62,14.71,14.55$, 14.06; HRMS (ESI): m / z calcd for $\mathrm{C}_{54} \mathrm{H}_{71} \mathrm{BF}_{2} \mathrm{~N}_{7}[\mathrm{M}+\mathrm{H}]^{+}: 866.5838$, found: 866.5838.

FNPs

A THF solution (0.5 mL) containing 1.1 mg of BCA (or 1.7 mg of BCAS) and 3 mg of DSPE-mPEG 2000 was poured into 10 mL of $90 \%(\mathrm{v} / \mathrm{v})$ water/THF solution. The mixture was followed by sonicating for 60 seconds and then stirred at room temperature overnight to evaporate THF and obtained BCA-FNP (or BCAS-FNP).

3. HR-SEM, UV and Fluorescence Spectra

Fig. S1 HR-SEM images of (a) BCA and (b) BCAS.

Fig. S2 UV absorbance change of (a) BCA-FNP and (b) BCAS-FNP in HEPES buffer (10 mM , $\mathrm{pH}=7.4$) via different concentration. Absorbance at 504 nm as functions of (c) BCA-FNP and (d) BCAS-FNP concentrations: $\mu \mathrm{M}$

Fig. S3 Fluorescence microscopy photos of the fluorescent nanoparticles BCAS-FNP.

Fig. S4 Fluorescence stability of (a) $5 \mu \mathrm{M}$ BCA-FNP and (b) $5 \mu \mathrm{M}$ BCAS-FNP in HEPES buffer ($10 \mathrm{mM}, \mathrm{pH}=7.4$)

Fig. S5 Fluorescent intensities of (a) $5 \mu \mathrm{M}$ BCA-FNP and (b) $5 \mu \mathrm{M}$ BCAS-FNP when pH changed from 1 to 12 .

4. Cell Culture and Confocal Imaging

HeLa cells (purchased from Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences) were cultured in modified DMEM medium (HyClone Corporation) supplemented with 10% fetal bovine serum. Fluorescence imaging of cells was performed using a confocal microscope (Olympus FV1200 with a $250 \times$ oil objective).

HeLa cells were incubated in humidified incubator $\left(37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}\right)$ overnight to make them adhere to the glass bottom of culture vessels (Nest Corporation, $\Phi 20 \mathrm{~mm}$). After washing once with phosphate buffer solution ($\mathrm{PBS}, \mathrm{pH}=7.4$), the cells were treated with probes and incubated for necessary time. The final concentration of target compounds was $1 \mu \mathrm{M}$. Then the cells were washed thrice with PBS, and added new culture medium to observe the fluorescence. Corresponding parameters of optical path were set as below: excitation: 488nm; emission range: $510-550 \mathrm{~nm}$.

Fig S6 Confocal fluorescence images of HeLa cells stained with $1 \mu \mathrm{M}$ BCA-FNP for (a) 5 min (b) 15 min and (c) 30 min . bottom: bright field.

Fig. S7 Confocal images of HeLa cell incubated with $1 \mu \mathrm{M}$ of BCAS-FNP for (a) 5 min and (b) 30 min. Confocal images of HeLa cell incubated with $5 \mu \mathrm{M}$ of BCAS-FNP for (c) 5 min and (d) 30 min

Table S1 Zeta potentials of the BCA-FNP and BCAS-FNP in HEPES buffer and culture medium. HEPES buffer (mV) Culture Medium (mV)

BCA-FNP	-18.55 ± 0.21	-4.37 ± 0.12
BCAS-FNP	14.67 ± 0.91	-2.11 ± 0.16

5. NMR Spectra for Compounds

