Supporting Information

A novel ascorbic acid electrochemical sensor based on
 spherical MOF-5 arrayed on three-dimensional porous carbon

electrode

Yonggui Song ${ }^{1,2}$, Couchong Gong ${ }^{1}$, Dan Su 2, Yuan Shen ${ }^{1}$, Yonghai Song ${ }^{1}$ and Li Wang ${ }^{1, *}$
${ }^{1}$ Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
${ }^{2}$ Jiangxi University of Chinese Traditional Medicine, 56 Yangming Road, Nanchang 330006, China.

[^0]

Fig. S1. Schematic illustration of the fabrication of MOF-5/3D-KSC composites and integrated MOF-5/3D-KSC electrode.

Fig. S2. CVs of GC electrode (A) and integrated MOF-5/3D-KSC electrode (B) in 0.1 M KCl solution containing $5.0 \mathrm{mM} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-14-}$ at $50 \mathrm{mVs}^{-1}$.

The effective surface areas ($A_{\text {eff }}$) of various GC electrode and integrated MOF-5/3D-KSC electrode were estimated before use based on the CVs in 0.1 M KCl solution containing $5.0 \mathrm{mM} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-1 / 4-}$ at $0.05 \mathrm{~V} \mathrm{~s}^{-1}$ according to Randles-Sevcik equation:
$I_{p}=2.69 \times 10^{5} A n^{3 / 2} D_{0}{ }^{1 / 2} v^{1 / 2} C_{0}$
where n is the number of electrons participating in the redox ($n=1$ for $\operatorname{Fe}(\mathrm{CN})_{6}{ }^{3-14}$), D_{0} is the diffusion coefficient of the molecule in a solution $\left(0.673 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}\right.$ for $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-14-}$ in 0.1 M KCl solution, C_{0} is the bulk concentration of the redox probe $\left(C_{0}=5 \mathrm{mM}\right.$ of the $\left.\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-1 / 4}\right)$. As shown in Fig. S1, the I_{p} was calculated to be 47.66 (A) and $78.35(\mathrm{~B})$ and accordingly the value of $A_{\text {eff }}$ for the GC electrode and integrated MOF-5/3D-KSC electrode was estimated to be $0.0610 \mathrm{~cm}^{2}$ and $0.1003 \mathrm{~cm}^{2}$.

Fig. S3. (A) SEM image of MOF-5. (B) The high magnification image of MOF-5.

Fig. S4. SEM images of the MOF-5/3D-KSC composites prepared by (A) $40 \mathrm{mg} \mathrm{ml}^{-1}$ (B) 60 mg ml^{-1} (C) $70 \mathrm{mg} \mathrm{ml}^{-1}$ (D) $90 \mathrm{mg} \mathrm{ml}^{-1}$ zinc nitrate hexahydrate, and the concentration ratio of zinc nitrate hexahydrate and $\mathrm{H}_{2} \mathrm{BDC}$ is 5.45:1.

Table. S1 Determination AA in parenteral nutrient solution samples ($\mathrm{N}=5$)

	The content	Added	Found	RSD	Recover	HPLC	RSD
NO.	y (mM)	(mM)	(mM)	$(\%)$	method $(\%)$	(mM)	$(\%)$
1	3.78	3	6.65	2.9	95.7	6.71	1.9
2	3.86	3	6.76	2.8	96.7	6.68	1.7
3	4.05	3	6.91	3.2	95.3	7.11	1.8
4	3.25	3	6.18	2.6	97.6	6.15	1.5

[^0]: *Corresponding author: Tel/Fax: +86 79188120861 . E-mail: lwanggroup@aliyun.com (L. Wang).

