Electronic Supplementary Information

A sensitive and label-free T4 polynucleotide kinase/phosphatase detection based on poly(thymine)templated copper nanoparticles coupled with nicking enzyme-assisted signal amplification

Jia Ge, *ab Lin Zhang, a Zhen-Zhen Dong, a Qi-Yong Cai, a and Zhao-Hui

Li*a

*Corresponding author.

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

^b State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University,

Changsha 410082, P. R. China

Tel.: +86-371-67780037; Fax: +86-371-67781556.

E-mail address: jiage0630@hnu.edu.cn ; zhaohui.li@zzu.edu.cn.

Methods	Detection limit (U/mL)	References
³² P-labeling	0.17	1
Fluorescence	0.04	2
Fluorescence	0.05	3
Fluorescence	0.01	4
Fluorescence	0.02	5
Fluorescence	0.49	6
Fluorescence	0.1	7
Colorimetric	0.06	8
Luminescence	0.05	9
Electrochemistry	0.01	10
Fluorescence	0.02	Our method

Table S1. Comparison of analytical performance of different methods for T4 PNKP activity detection

	Concentration of T4 PNKP (U mL ⁻¹)	RSD(%), n=3
	0.02	6.26
	0.05	3.40
	0.1	4.64
Fig. 3	0.2	2.80
	2	1.50
	5	3.28
	10	2.50
	20	2.65
	Concentration of T4 PNKP (U mL ⁻¹)	RSD(%), n=3
	0.02	5.96
	0.05	2 75
	0.05	5.75
	0.1	3.60
Fig. 5	0.00	3.60 4.06
Fig. 5	0.02 0.1 0.2 2	3.60 4.06 3.94
Fig. 5	0.02 0.2 5	3.73 3.60 4.06 3.94 3.68
Fig. 5	0.00 0.1 0.2 2 5 10	3.60 4.06 3.94 3.68 2.76

Table S2. The relative standard deviations of Fig. 3 and Fig. 5.

Fig. S1. Investigation of the fluorescence intensity of obtained CuNPs as a function of amplification time. (Probe 1, 50 nM; T4 PNKP, 25 U/mL; KF polymerase, 25 U/mL; Nb.BbvCI, 50 U/mL; dNTPs, 200 μ M; ascorbate, 5 mM; Cu²⁺, 200 μ M).

Fig. S2. Effect of Nb.BbvCI concentration on fluorescence intensity. The results were the average of three repetitive experiments with error bars indicating the standard deviation. (Probe 1, 50 nM; T4 PNKP, 25 U/mL; KF polymerase, 25 U/mL; dNTPs, 200 μ M; ascorbate, 5 mM; Cu²⁺, 200 μ M).

Fig. S3. (A) Optimization of dNTPs concentration. The concentration of KF polymerase was 25 U/mL. (B) Optimization of KF polymerase concentration. The concentration of dNTPs was 200 μ M. (Probe 1, 50 nM; T4 PNKP, 25 U/mL; Nb.BbvCI, 50 U/mL; ascorbate, 5 mM; Cu²⁺, 200 μ M).

Fig. S4. Fluorescence spectra of the obtained CuNPs with T4 PNKP (black histogram) and without T4 PNKP (gray histogram) in the presence of different orders of addition of three enzyme : (1) T4 PNKP + KF polymerase + Nb.BbvCI; (2) T4 PNKP + Nb.BbvCI+ KF polymerase; (3) KF polymerase + T4 PNKP + Nb.BbvCI; (4) KF polymerase + Nb.BbvCI + T4 PNKP; (5) Nb.BbvCI + T4 PNKP + KF polymerase; (6) Nb.BbvCI+ KF polymerase + T4 PNKP. (Probe 1, 50 nM; T4 PNKP, 25 U/mL; KF polymerase, 25 U/mL; Nb.BbvCI, 50 U/mL; dNTPs, 200 μM; ascorbate, 5 mM; Cu²⁺, 200 μM).

References:

- 1 F. Karimi-Busheri, G. Daly, P. Robins, B. Canas, D. J. Pappin, J. Sgouros, G. G. Miller, H. Fakhrai, E. M. Davis, M. M. Le Beau and M. Weinfeld, *J. Biol. Chem.*, 1999, **274**, 24187–24194.
- 2 C. Song and M. P. Zhao, Anal. Chem., 2009, 81, 1383-1388.
- 3 L. Lin, Y. Liu, X. Zhao and J. H. Li, Anal. Chem., 2011, 83, 8396-8402.
- 4 L. Lin, Y. Liu, J. Yan, X.S. Wang and J. H. Li, Anal. Chem., 2013, 85, 334–340.
- 5 C. X. Song, X. H. Yang, K. M. Wang, Q. Wang, J. B. Liu, J. Huang, L. L. He, P.
- Liu, Z. H. Qing and W. Liu, Chem. Commun., 2015, 51, 1815–1818.
- 6 L. L. Zhang, J. J. Zhao, H. Zhang, J. H. Jiang and R. Q. Yu, *Biosens. Bioelectron.*, 2013, 44, 6–9.
- 7 Z. Z. Dong, L. Zhang, M. Qiao, Jia. Ge, A. L. Liu and Z. H. Li, *Talanta*, 2016, **146**, 253-258.
- 8 C. Jiang, C. Y. Yan, J. H. Jiang and R. Q. Yu, Anal. Chim. Acta, 2013, 766, 88-93.
- 9 H. Z. He, K. H. Leung, W. Wang, D. S. H. Chan, C. H. Leung and D. L. Ma, *Chem. Commun.*, 2014, **50**, 5313–5315.
- 10 Y. H. Wang, X. X. He, K. M. Wang, X. Q. Ni, J. Su and Z. F. Chen, *Biosens. Bioelectron.*, 2011, **32**, 213–218.