Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Material

Fluorescence Anisotropy Assay for D-Vasopressin with Tetramethylrhodamine-Labeled Aptamer

Yingxiong Liu^{a,b}, Qiang Zhao^{a, b*}

^aInstitute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China

^bState Key Laboratory of Environmental Chemistry and Ecotoxicology, Research

Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing,

100085, China

Fig. S1 (A) Effects of KCl concentration on the FA responses of Vas-34T-TMR in the absence or the presence of D-Vas in the binding buffer solution containing 50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 1 mM MgCl₂, 1 mM CaCl₂, 0.1% Tween 20, and various concentrations of KCl. (B) The FA change of Vas-34T-TMR caused by D-Vas vs KCl concentration.

Fig. S2 (A) Effects of MgCl₂ concentration on the FA responses of Vas-34T-TMR in the absence or the presence of D-Vas in the binding buffer solution containing 50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 1 mM CaCl₂, 0.1% Tween 20, and various concentrations of MgCl₂. (B) The FA change of Vas-34T-TMR caused by D-Vas vs MgCl₂ concentration.

Figure. S3 (A) Effects of CaCl₂ concentration on the FA responses of Vas-34T-TMR in the absence or the presence of D-Vas in the binding buffer solution containing 50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 1 mM MgCl₂, 0.1% Tween 20, and various concentrations of CaCl₂. (B) The FA change of Vas-34T-TMR caused by D-Vas vs CaCl₂ concentration.

Fig. S4 (A) Effects of incubation time on the FA of Vas-34T-TMR in the absence or the presence of D-Vas. (B) The FA change of Vas-34T-TMR caused by D-Vas vs the incubation time.

Fig. S5 Fluorescence intensity of Vas-34T-TMR in response to different concentrations of D-Vas.

Fig.S6 FA sensing D-Vas spiked in different complex sample matrix by using Vas-34T-TMR

Methods	LOD	Ref.
Microfluidic platform coupled with MALDI-MS	1 pM	38
Surface-enhanced Raman spectroscopy (SERS) assay	1 pM	41
based on aptamer-functionalized nanopillars		
Microfluidic electrochemical sensors	43 pM	39
Microfluidic platform coupled with fluorescence	100 pM	38
detection		
Electrochemical aptasensor using redox methylene	0.9 nM	40
blue-confined graphene multilayer		
Assay using split aptamer and graphene-mesoporous	4.6 nM	35
silica-gold NP hybrids		
Fluorescent indicator displacement assay	0.1 µM	36
Fluorescence polarization assay using TMR labeled	0.2 µM	This work
aptamer		
HPLC using aptamer as chiral stationary phase	not reported	34

Table.S1 Comparison of a few aptamer-based assays for D-Vas