Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2016

Electronic supplementary information (ESI)

In situ formation of carbon dots aids ampicillin sensing

Rahul Kumar Mishra^a, Indra Neel Pulidindi^a, Eihab Kabha^a, Aharon Gedanken^{a, b*}

^aDepartment of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel

^bNational Cheng Kung University, Department of Materials Science and Engineering, Tainan

70101, Taiwan

Tel: +972-3-5318315; *Fax:* +972-3-7384053;

*E-mail: gedanken@mail.biu.ac.il

Fig. S1. ¹H NMR spectra of (a) glucose (5 wt.%) before, (b) glucose (5 wt.%) after the hydrothermal reaction at 120 $^{\circ}$ C for 40 min.

Fig. S2. ¹³C NMR spectra of (a) glucose (5 wt.%) before, (b) glucose (5 wt.%) after the hydrothermal reaction at 120 $^{\circ}$ C for 40 min.

Fig. S3. Role of glucose in ampicillin sensing: UV-Vis absorption spectra of (a) aqueous solution of ampicillin (13-200 ppm) alone and (b) aqueous solutions of ampicilling (13-200) with glucose (5 wt.%) subjected to hydrothermal treatment at 120 °C for 40 min.

Fig. S4. Photoluminescence (PL) spectra of analyte H13 (ampicillin, 533 ppm) after hydrothermal treatment (120 °C, 40 min.) excited at different wavelengths. (Typical composition of H13 could be found in Table S1)

Sample code	H0	H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12	H13
Glucose (5 %), mL	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Ampicillin (0.1 %), mL	0	0.1	0.2	0.4	0.6	0.8	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
Ampicillin (in ppm)	0	6.6	13.3	26.7	40	53.3	66.6	133.3	200	266. 6	333.3	400	466. 6	533
Water, mL	14.0	13.9	13.8	13.6	13.4	13.2	13.0	12.0	11.0	10.0	9.0	8.0	7.0	6.0
Total volume, mL	15	15	15	15	15	15	15	15	15	15	15	15	15	15

Table S1. Analytes with varying amounts of ampicillin (0 - 533 ppm)

Fig. S5. Photoluminescence (PL) spectra of analyte F13 (ampicillin, 93.3 ppm) after hydrothermal treatment (120 °C, 40 min.) excited at different wavelengths. (Typical composition of F13 could be found in Table S2)

Table S2.	Analytes with	varving amou	ints of amp	oicillin (0 - 93.3	ppm`
	I mary too with	var ynng annoe	mus or ump		0 /5.5	$\rho \rho m$

Sample code	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13
Glucose (1 %), mL	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Ampicillin (0.01 %), mL	0	0.1	0.2	0.4	0.6	0.8	1.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0
Ampicillin (in ppm)	0	0.6	1.3	2.6	4	5.3	6.6	13.3	26.7	40	53.3	66.6	80.0	93.3
Water, mL	14.0	13.9	13.8	13.6	13.4	13.2	13.0	12.0	10.0	8.0	6.0	4.0	2.0	0
Total volume, mL	15	15	15	15	15	15	15	15	15	15	15	15	15	15

Scheme S1. Chemical structures of (a) ampicillin, (b) 2-phenyl glycine, and (c) (+)-6-amino penicillanic acid

Scheme S2. Formation of new energy level $(N\pi^*)$ in the carbon dot structure by the incorporation of nitrogen

Fig. S6. Photoluminescence spectra of (a) (+)-6-amino penicillanic acid and (b) 2-phenyl glycine (Inset: Photographs of aqueous solution of carbon dots from (a) (+)-6-amino penicillanic acid and (b) 2-phenyl glycine, under UV lamp, 365 nm)

Fig. S7. ¹H NMR spectra of ampicillin (0.1 wt.%) (a) before, and (b) after the hydrothermal reaction at 120 °C for 40 min.

Fig. S8. 13 C NMR spectra of (a) ampicillin (0.1 wt.%) before, and (b) after the hydrothermal reaction at 120 °C for 40 min.

Fig. S9. ¹H NMR spectra of the aqueous solution of ampicillin of different concentrations (533 and 933 ppm) after subjected to hydrothermal treatment at 120 °C for 40 min.

Fig. S10. ¹H NMR spectra of glucose (5 wt.%) - ampicillin (0.1 wt.%) solution (a) before and (b) after the hydrothermal reaction at 120 °C for 40 min.

Fig. S11. ¹³C NMR spectra of glucose (5 wt.%) - ampicillin (0.1 wt.%) solution (a) before and (b) after the hydrothermal reaction at 120 °C for 40 min.

Fig. S12. ¹³C NMR spectra of analytes from glucose (5 wt. %) and ampicillin (0.1 wt. %) solution subjected to hydrothermal treatment at 150 °C for (a) 2 h, (b) 4 h, (c) 6 h and (d) 12 h

Fig. S13. FT-IR spectrum of ampicillin

Fig. S14. FT-IR spectra of (a) Carbon nanodot (CNDs)-glucose composite obtained after 12 h of hydrothermal reaction at 150 °C and (b) aq. glucose (5 wt.%)

Fig S15. XRD pattern of carbon dots generated in the hydrothermal reaction at 150 $^{\circ}$ C for 2, 4, 6 and 12 h