Supporting Information

A Fluorescence Anisotropy Study of DNA Hybridization Reaction Mediated by Formation of C-Ag⁺-C Structure

Xinying Hong^a, Hongduan Huang^a, Mingxing Chen^b, Feng Liu^a, Na Li^{*a}

^aBeijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, and ^bMedium Instrument Lab, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. DNA sequences (from 5' to 3') used in this work are given in the following tables. DNA was named according to the dye, the strand length, the number of C-C mismatch between the ROX-labeled strand and the partially complementary strand, the usage of hairpin structure and the length of c-overhang. Specifically, L20ROX represents a 20-nt ROX-labeled ssDNA strand; H10L20M5 represents a hairpin-structured partially complementary strand with a 10-b.p. stem and a 20-nt loop and five C-C- mismatched sites to L20ROX. L15M3O6 represents a 15-nt linear partially complementary strand with three C-C mismatches to L15ROX and have a 6-nt c-overhang when hybridizing with L15ROX.

Effect of buffer and pH (Fig. 1)

Name	Sequence
L20ROX	CACACCACACCACACAC
H10L20M5	ATGCAATTAAGTCTCGTGTCGTCTGGTCTGTTAATTGCAT

Effect of the C-C mismatch percentage (Fig. 2 & Fig. S1)

Name	Sequence
L10ROX	CACCACACCA
L10M0	TGGTGTGGTG
L10M1	TGGTCTGGTG
L10M2	TGCTGTCGTG
L12ROX	ACCACACCACAC
L12M3	GTCTGCTGTCGT
L12M2	GTCTGGTGTCGT
L12M1	GTGTGCTGTGGT
L12M0	GTGTGGTGTGGT
L15ROX	CACCACACCACCA
L15M3	TGCTGTGCTGTGCTG
L15M2	TGGTCTGGTGTCGTG
L15M1	TGGTGTGCTGTGGTG
L15M0	TGGTGTGGTGTGGTG
L20ROX	CACACCACACCACACAC
L20M3	GTCTGGTGTGGTCTGGTCTG
L20M4	GTCTGGTCTGGTCTGGTCTG
L20M5	GTCTCGTGTCGTCTGGTCTG
L20M7	GTCTCGTCTCGTCTCG
L20M9	CTCTCGTCTCGTCTCGTCTC

Effect of the length of the fluorescent DNA (Fig. 3)

Name	Sequence
L15ROX	CACCACACCACCA
L15M3	TGCTGTGCTGTGCTG
L20ROX	CACACCACACCACACAC
L20M4	GTCTGGTCTGGTCTGGTCTG
L25ROX	CACACCACACCACCACACCACAC

L25M5	GTCTGGTCTGGTCTGGTCTGGTCTG
L30ROX	CACACCACACCACCACCACCACCACACCACAC
L30M6	GTCTGGTCTGGTCTGGTCTGGTCTG

Usage of hairpin structure (Fig. 4 & Fig. 5)

Name	Sequence
L20ROX	CACACCACACCACACAC
L20M3	GTCTGGTGTGGTCTGGTCTG
H8L20M3	ATATAATTGTCTGGTGTGGTCTGGTCTGAATTATAT
H10L20M3	TACGTTAATTGTCTGGTGTGGGTCTGGTCTGAATTAACGTA
H12L20M3	TTAACGTTAATTGTCTGGTGTGGTCTGGTCTGAATTAACGTTAA
H14L20M3	TTTAAACGTTAATTGTCTGGTGTGGTCTGGTCTGAATTAACGTTTAA
	Α
L20M4	GTCTGGTCTGGTCTGGTCTG
H8L20M4	ATATAATT GTCTGGTCTGGTCTGGTCTGAATTATAT
H10L20M4	TACGTTAATT GTCTGGTCTGGTCTGGTCTGAATTAACGTA
L15ROX	CACCACACCACCA
H10L15M0	ATGCAATTAATGGTGTGGTGTGGTGTGTTAATTGCAT
H10L15M1	ATGCAATTAATGGTGTGCTGTGGTGTTAATTGCAT
H10L15M2	ATGCAATTAATGGTCTGGTGTCGTGTTAATTGCAT
H10L15M3	ATGCAATTAATGCTGTGCTGTGCTGTTAATTGCAT

Equilibrium constant of dsDNA formation (Fig. 6)

Name	Sequence
L15ROX	CACCACACCACCA
L15M3O6	TGCTGTGCTGTGCTGTTAATT

Fig. S1 The fluorescence anisotropy changes as a function of the silver ion concentration at varied number of C-C mismatches with the 10-nt fluorescent DNA.

Fig. S2 Fluorescence anisotropy changes as a function of silver ion concentration at varied number of C-C mismatches when using a 15-nt fluorescent DNA and a partially complementary hairpin strand.

The derivation of the Equation 5.

According to the Scatchard model, binding of ligands to multiple sites follows Equation S1,

$$\bar{n} = \frac{n[Ligand]}{CEEO}$$

$$K_d + [Ligand]$$
 RMA

T (S1)

*

where \bar{n} is the average number of bound ligand, n is the total number of binding sites, [Ligand] is the concentration of unbound ligand and K_d is the dissociating constant. Since silver ion served as the ligand, Equation S1 could be rewritten into Equation S2,

$$\bar{n} = \frac{n[Ag^+]}{GEEO}$$

$$\frac{n-1}{K_d + [Ag^+]}$$
GEFO
RMA

T (S2)

*

where $[Ag^+]$ is the concentration of the unbound silver ion. Then Equation S2 was reformulated into Equation S3,

$$\bar{n}K_d$$
 MER

$$[Ag^+] = \frac{a}{n - \bar{n}}$$
GEFO
RMA

T (S3)

*

According to the mass balance, the concentration of the unbound silver ion can be expressed by Equation S4

* MER

$$[Ag^{+}] = c_{Ag^{+}} - \bar{n}\alpha c_{DNA} \qquad \text{GEFO}$$

RMA

T (S4)

where c_{Ag}^{c} + and c_{DNA} is the total concentration of silver ion and the DNA strand. Therefore,

*

$$=\frac{\bar{n}K_d}{GEFO}$$

$$[Ag^{+}] = c_{Ag^{+}} - \bar{n}\alpha c_{DNA} = \frac{nK_d}{n - \bar{n}}$$
GEFO
RMA

T (S5)

Equation S5 could be then rewritten into Equation S6

*

$$\alpha = \frac{c_{Ag}^{+} + K_{d}}{GEFO}$$

$$c_{DNA}\bar{n} + c_{DNA}(\bar{n} - n)$$
RMA

T (S6)

which is the Equation 5 in the article.

According to the sequence design and the experimental procedure, n was and c_{DNA} was 20 nM. Therefore, the equation used to fit the experimental data was

*

$$\alpha = \frac{c_{Ag^+}}{K_d} + \frac{K_d}{GEFO}$$

$$\frac{1}{20\bar{n}} + \frac{1}{20(\bar{n}-3)}$$
 RMA

T (S7)