A greener flow injection method based on LWCC for screening of

tetracycline antibiotics in bovine milk samples

Michael Pérez Rodríguez, Bianca Ferreira da Silva, Helena Redigolo Pezza and

Leonardo Pezza*

Electronic supplementary information

Table S1 SRM performance parameters under optimized conditions

Analyte	First	CE	CEP	Second	CE	CEP	Third	CE	CEP
	transition	(V)	(V)	transition	(V)	(V)	transition	(V)	(V)
TC	445>410	21	6	445>154	33	4	445>427	17	6
DC	445>428	21	6	445>98	65	4	445>267	49	4
OTC	461>426	23	6	461>443	17	6	461>201	49	4

Note: (CE) Collision energy, (CEP) Cell exit potential.

Figure S1 Scheme of the reaction mechanism proposed for the formation of azo compounds from tetracyclines.

Figure S2 XICs (extracted ion chromatograms) of (A) oxytetracycline, (B) tetracycline, and (C) doxycycline obtained for a standard mixture of these antibiotics at 150 μ g L⁻¹. (D) TIC (total ion chromatogram) of a blank milk sample. (E) TIC of methanol solvent. XICs of (F) oxytetracycline, (G) tetracycline, and (H) doxycycline for a blank milk sample spiked with 150 μ g L⁻¹.