Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Tables

Table 1. Developed PLSR calibration models using different pre-processing techniques

	Calibration —		Pre-processing Technique						
Attribute		SNV	Savitzky-Golay (n = 11)	MSC	1 st order derivative	2 nd order derivative	Savitzky-Golay (n = 11) and SNV		
	R_c^2	0.99	0.98	0.99	0.99	0.99	0.99		
Γ.4	RMSEC	2.77	3.00	2.25	2.36	2.51	1.91		
Fat	R_{cv}^2	0.97	0.97	0.98	0.98	0.98	0.99		
	RMSECV	4.18	4.27	3.75	3.93	3.88	2.48		
	R_c^2	0.98	0.98	0.99	0.99	0.98	0.99		
Moisturo	RMSEC	2.28	2.47	1.84	2.00	2.12	1.73		
WOIsture	R_{cv}^2	0.97	0.97	0.98	0.97	0.97	0.98		
	RMSECV	3.43	3.49	2.98	3.34	3.26	2.22		
	R_c^2	0.98	0.98	0.99	0.99	0.99	0.99		
Drotoin	RMSEC	0.65	0.69	0.54	0.55	0.59	0.42		
FIOLEIII	R_{cv}^2	0.97	0.97	0.97	0.97	0.97	0.98		
	RMSECV	0.98	1.00	0.99	0.89	0.90	0.68		
	R_c^2	0.98	0.98	0.98	0.98	0.98	0.98		
Ash	RMSEC	0.03	0.04	0.03	0.03	0.04	0.03		
73511	R_{cv}^2	0.96	0.96	0.95	0.95	0.94	0.96		
	RMSECV	0.06	0.06	0.06	0.06	0.07	0.05		

* 5 number of pls components were used for all models.

Table 2 Comparison of standard deviation for reference values and the SEP values obtained for pure minced lean beef

		Standard deviation of proximate values for minced lean beef	Validation						
			SEP						
1	Attribute		St	atic	Motion				
			without baseline correction	with baseline correction	without baseline correction	with baseline correction			
]	Fat	±0.86	4.19	3.46	3.98	5.82			
1	Moisture	±0.58	3.30	3.03	2.89	4.89			
]	Protein	±0.49	1.41	0.98	1.17	1.07			
1	Ash	±0.06	0.09	0.09	0.11	0.07			

*5 pls components were used for calculating SEP values and the predicted values at a stand-off distance of 1.5 cm were chosen.

Table 3 Comparison of standard deviation for reference values and the SEP values obtained for minced beef fat trimmings

Attribute	Standard	Validation						
	deviation of proximate values for minced beef fat trimmings	SEP						
		Stat	tic	Motion				
		without baseline correction	with baseline correction	without baseline correction	with baseline correction			
Fat	±4.74	4.28	8.01	3.51	4.75			
Moisture	±4.86	3.69	6.04	3.36	3.44			
Protein	±0.26	1.05	2.14	0.69	1.55			
Ash	±0.04	0.05	0.10	0.05	0.08			

*5 pls components were used for calculating SEP values and the predicted values at a stand-off distance of 1.5 cm were chosen.

	No. of components		Validation Motion				
		- Probe-sample _ distance (cm)					
Attribute			Without baseline correction		With baseline correction		
			R_p^2	SEP	R_p^2	SEP	
	5	1	0.74	10.05	0.78	11.17	
Fat		1.5	0.85	7.19	0.79	10.46	
		4	0.90	8.20	0.87	9.39	
	5	1	0.70	7.76	0.74	9.16	
Moisture		1.5	0.83	5.80	0.74	8.93	
		4	0.90	6.23	0.87	7.14	
		1	0.87	2.13	0.80	2.80	
Protein	5	1.5	0.88	1.93	0.83	2.49	
		4	0.90	1.71	0.89	1.93	
		1	0.76	0.12	0.67	0.14	
Ash	5	1.5	0.74	0.10	0.70	0.15	
		4	0.67	0.16	0.74	0.14	

Figures

Fig. 1. Prediction plots for fat in static as well as in motion; (a) static- without baseline correction, (b) static- with baseline correction, (c) motion- without baseline correction and (d) motion- with baseline correction (\bullet : Training set, \blacktriangle : Testing set (4 cm), \blacksquare : Testing set (1.5 cm) and \bullet : Testing set (1 cm)).

Fig. 2. Prediction plots for moisture in static as well as in motion; (a) static- without baseline correction, (b) static- with baseline correction, (c) motion- without baseline correction and (d) motion- with baseline correction (•: Training set, ▲: Testing set (4 cm), ■: Testing set (1.5 cm) and •: Testing set (1 cm)).

Fig. 3. Prediction plots for protein in static as well as in motion; (a) static- without baseline correction, (b) static- with baseline correction, (c) motion- without baseline correction and (d) motion- with baseline correction (\bullet : Training set, \blacktriangle : Testing set (4 cm), \blacksquare : Testing set (1.5 cm) and \bullet : Testing set (1 cm)).

Fig. 4. Prediction plots for ash in static as well as in motion; (a) static- without baseline correction, (b) static- with baseline correction, (c) motion- without baseline correction and (d) motion- with baseline correction (\bullet : Training set, \blacktriangle : Testing set (4 cm), \blacksquare : Testing set (1.5 cm) and \bullet : Testing set (1 cm)).

Fig. 5. Spatial map for percentage of moisture content in static conditions distributed as; (a) Measured moisture content, (b) Predicted moisture content without baseline correction adjustment (c) Predicted fat with baseline correction adjustment.

Measured moisture composition

Measured protein composition

Fig. 6. Spatial map for percentage of protein content in static conditions distributed as; (a) Measured protein content, (b) Predicted protein content without baseline correction adjustment (c) Predicted fat with baseline correction adjustment.

Measured ash composition

Fig. 7. Spatial map for percentage of ash content in static conditions distributed as; (a) Measured ash content, (b) Predicted ash content without baseline correction adjustment (c) Predicted fat with baseline correction adjustment.