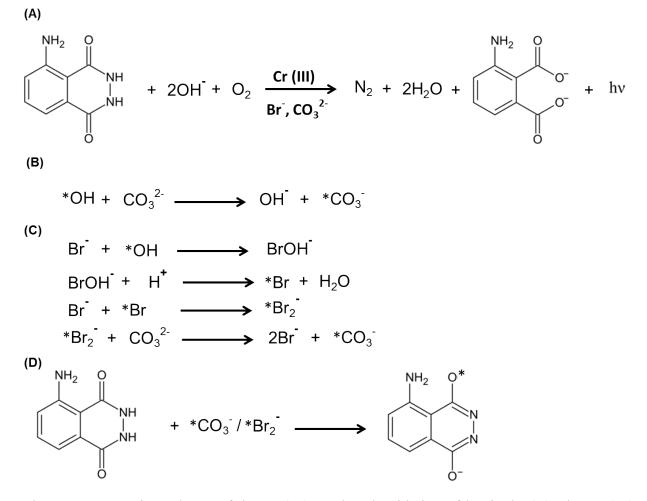
Supplementary Information for:

Miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium (III)


Waleed Alahmad,^{a,b} Kanchana Uraisin,^{a,b} Duangjai Nacapricha,^{a,b} and Takashi Kaneta^{*c,}

 ^aFlow Innovation-Research for Science and Technology Laboratories (FIRST labs)
^bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok10400, Thailand
^cDepartment of Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530 Japan

Corresponding Author *E-mail: kaneta@okayama-u.ac.jp. Tel: +81-86-251-7847. Fax: +81-86-251-7847.

Contents

Scheme S1. Reaction scheme of the Cr (III)-catalyzed oxidation of luminol	S-2
Fig. S1. The design of the μPAD	S-3
Fig. S2. Photos of an acrylic holder	S-4
Fig. S3. Effect of hydrogen peroxide concentration on CL intensity	S-5
Fig. S4. Effect of hydrogen peroxide concentration on CL intensity	S-5
Fig. S5. Effect of sodium bromide concentration on CL intensity	S-6
Table S1. Common concentrations of heavy metals in natural water and the te	sted
concentrations in this study	S-7

Scheme S1. Reaction scheme of the Cr (III)-catalyzed oxidation of luminol. (A) The Cr (III)catalyzed oxidation of luminol by hydrogen peroxide in the presence of Br⁻ and CO_3^{2-} used as enhancers. (B) and (C) Generation of a carbonate radical and a bromide radical via a hydroxyl radical. (D) The reaction between a carbonate radical/bromide radical with luminol to yield a luminol radical.

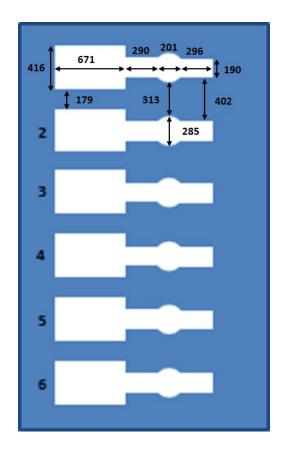


Figure S1. The design of the μ PAD (before heating). The dimensions are indicated in millimeters.

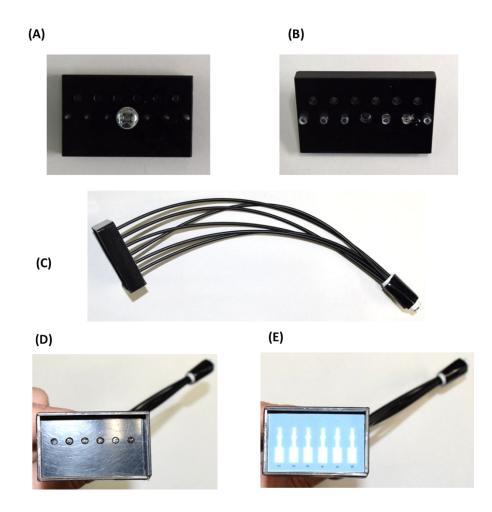


Figure S2. Photos of an acrylic holder's parts.

- (A) The cover plate (Top View).
- (B) The cover plate (bottom View).
- (C) The holder plate after connection with optical fibers (Side View).
- (D) The holder plate after connection with optical fibers (Top View).
- (E) The holder plate after connection with optical fibers and the µPAD placed on it (Top View).

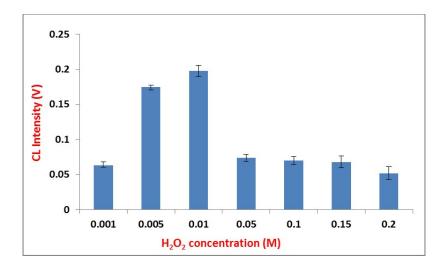


Fig. S3. Effect of hydrogen peroxide concentration on CL intensity. Cr (III) 3 ppm. CL reaction solution: 10×10^{-4} M luminol, 1.0×10^{-1} M NaBr and 1.0×10^{-2} M EDTA in 5.0×10^{-2} M NaHCO₃–Na₂CO₃ buffer, pH of CL reagent 12.1

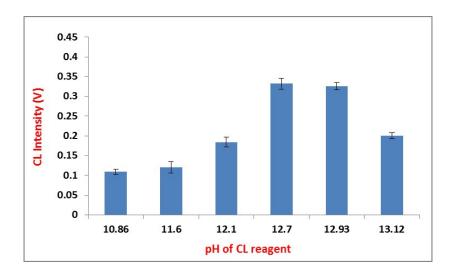


Fig. S4. Effect of pH on CL intensity.

Cr (III) 3 ppm. CL reaction solution: 1.0×10^{-2} M hydrogen peroxide, 10×10^{-4} M luminol, 1.0×10^{-1} M NaBr and 1.0×10^{-2} M EDTA in 5.0×10^{-2} M NaHCO₃–Na₂CO₃ buffer.

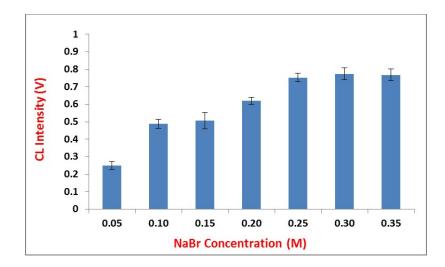


Fig. S5. Effect of sodium bromide concentration on CL intensity. Cr (III) 3 ppm. CL reaction solution: 1.0×10^{-2} M hydrogen peroxide, 10×10^{-4} M luminol and 1.0×10^{-2} M EDTA in 5.0×10^{-2} M NaHCO₃–Na₂CO₃ buffer, pH of CL reagent 12.7.

Table S1. Common concentrations of heavy metals in natural water and the tested concentration in this study.

Interfering species	Common Concentration in natural water/		Tested Concentration/ ppm
	River water ^a	Tap water	i i i i i i i i i i i i i i i i i i i
Cr (III) ¹	0.34×10 ⁻³	0.33×10 ^{-3 b}	—
Cr (VI) ¹	0.36×10 ⁻³	0.13×10 ^{-3 b}	5.00 Cr (VI)
Pb ²	0.48×10 ⁻³	0.10×10 ⁻³ c	2.00 Pb (II)
Zn ²	6.80×10 ⁻³	0.80×10 ⁻³ c	10.00 Zn (II)
Cu ²	1.80×10 ⁻³	7.30×10 ⁻³ c	5.00 Cu (II)
Cd ²	0.09×10 ⁻³	0.006×10 ⁻³ c	3.00 Cd (II)
Ni ²	0.94×10 ⁻³	0.75×10 ⁻³ c	10.00 Ni (II)
Mn ²	5.20×10 ⁻³	0.20×10 ⁻³ c	5.00 Mn (II)
Fe ²	103×10 ^{−3} d	3.7×10 ⁻³ ¢	5.00 Fe (III)

^a Zasu River located in Okayama City, Japan.

^b Tap water from Faculty of Science, Okayama University, Japan.

^c Tap water from VBL Okayama University, Japan.

^d River-water reference material for trace metals issued by National Research Council Canada

(SLRS-4).

References

- 1. S. Motomizu, K. Jitmanee and M. Oshima, Anal. Chim. Acta, 2003, 499, 149-155.
- 2. R. K. Katarina, N. Lenghor and S. Motomizu, Anal. Sci., 2007, 23, 343-350.