Supplemental Information

Layered MoS₂-graphene composites for biosensor applications

with sensitive electrochemical performance

Kunjie Zhang,^a Hong Sun*a and Shifeng Hou^b

^a Institute of Multifunctional Materials (IMM), Laboratory of New Fiber Materials and Modern Textile, College of

Materials Science and Engineering, Qingdao University, Qingdao 266071, China.

^b Department of Chemistry, Shandong University, Jinan 250100, China.

Fig. S1 FT-IR spectra of (a) MoS₂, (b) graphene, (c) layered MoS₂-graphene film, and (d) layered Mb/MoS₂-

graphene/Nafion composite film.

Fig. S2 UV-vis spectroscopy of (a) dry Mb film, and (b) dry layered Mb/MoS₂-graphene/Nafion film in pH 7.0 buffers.

*Corresponding author. Tel: +86-532-83780323; Fax: +86-532-85955529. E-mail: sun_hong@qdu.edu.cn (H. Sun).

Fig. S3 The influence of the scan cycle numbers on the CV reduction peak current I_{pc} for the layered Mb/MoS₂-graphene/Nafion films at a scan rate of 0.1 V s⁻¹ in pH 7.0 buffers.

Fig. S4 CVs of layered Mb/MoS₂-graphene/Nafion films in pH 7.0 buffers with different scan rates (a to h: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 V s⁻¹). Insert is the relationship of anodic and cathodic peak currents versus scan rate.

Fig. S5 Influence of scan rate on catalytic efficiency, I_c/I_d , for layered Mb/MoS₂-graphene/Nafion film in 8 mL pH 7.0 buffers, where I_d is the CV reduction peak current in buffer without oxygen and I_c is the CV reduction peak current with 40 mL of air injected.

Fig. S6 Plot A: Amperometric response of (a) layered MoS_2 -graphene/Nafion film, and (b) layered Mb/MoS_2 -graphene/Nafion film at -0.1 V in pH 7.0 buffer solution with 10 μ M H₂O₂ injected every 40 s. Plot B shows the calibration curve of amperometric currents and the concentrations of H₂O₂.

S7 RSD was calculated as following:

$$RSD = \frac{\sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1}}}{X} \times 100\%$$
$$X_{i=0.58, 0.60, 0.61, 0.59, 0.61 \ \mu A}$$
$$X = \frac{\sum_{i=1}^{n} X_i}{n}$$

Table S1 The electrochemical parameters for different Mb-films on GCE

Film	$\Delta E_p/mV$	$I_{\rm pc}/\mu{ m A}$	E ^{0'} /V vs SCE	$\Gamma^*/\text{mol cm}^{-2}$	Γ*/Γ/%
Mb/graphene/Nafion	61	0.70	-0.37	5.09×10 ⁻¹¹	1.29%
Mb/MoS ₂ /Nafion	60	0.79	-0.37	6.84×10 ⁻¹¹	1.73%
Layered Mb/MoS2-graphene/Nafion	52	1.06	-0.38	9.00×10 ⁻¹¹	2.27%

 $E^{0'}$: the formal potential estimated as the midpoint of reduction and oxidation peak potentials; $\Delta E_p = E_{pa} - E_{pc}$: the separation between the anodic and the cathodic peak potentials; I_{pc} : the cathodic peak current; I^* : the surface concentration of electroactive Mb in different Mb-film. These data were estimated by CVs in pH 7.0 buffers at a scan rate of 0.2 V s⁻¹.