
1 SUPPLEMENTARY MATERIAL 

2 Theory

3  MCR-ALS 

4 Multivariate curve-resolution (MCR) coupled to alternating least-squares (ALS) is capable of 

5 handling data matrices with varying component profiles in one of the data dimensions. It can be 

6 thought that this makes it especially suitable for the convenient processing of kinetic-

7 spectrophotometric matrix data; tipically  many examples of successful application of MCR-ALS  for  

8 resolving this kind of matrix data have been published in scientific literature .1- 3 

9 In MCR-ALS, an augmented data matrix is created from a group of data matrices for several 

10 samples. We consider matrices of size JxK, where J is the number of data points in the spectral 

11 dimension  it means the number of wavelengths and K is the number of data points in the kinetic or 

12 temporal dimension it means the number of reaction times.  This mathematical resource allows this 

13 algorithm to resolve linear dependence data. The augmented matrix could be constructed assembling 

14 data matrices following columns direction, rows direction or both directions simultaneously. In general, 

15 augmentation can be performed in either direction, depending on the type of experiment being 

16 analyzed.

17 However, usually the matrices are augmented in the mode suspected to lose the linearity. In the 

18 present case, the mode of augmentation should be the spectral one, since identical data profiles were 

19 obtained in spectral dimension correspond to unreacted HCF. An augmented matrix D of size J(I+1) x 

20 K  was developed  by joining calibration matrices Xc,i  and the unknown matrix Xu  . 4, 5  

21 Therefore, the bilinear decomposition of the augmented matrix D  was performed according to 

22 the expression:

23 D = Saug GT + E (1)
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24  where the rows of D contain the spectra measured for different samples at several values of the 

25 temporal dimension, Saug contains spectra for intervenient species, G contains  the temporal or kinetic 

26 profiles and E is a matrix of residual not fitted by the model. The property dimensions for D, S, G and 

27 E are (I + 1)JxK, (I+1)JxN,  KxN,  and  (I + 1)JxK  respectively ( being  I the number of calibration 

28 matrices , J the number  of wavelengths , K number of temporal data  and  N  is the number of 

29 responsive components). As can be seen, D contains data for the I different samples. 

30 The iterative ALS procedure aims at minimizing the Frobenius norm of || E ||, and was 

31 initialized using an initial estimation of the kinetic profiles of pure components used for calculating Ŝ  

32 ( Ŝ  means the estimation of  S) as :

33 Ŝ  = D GT+          (2)

34 where  '+' means the pseudoinverse  of the matrix GT = [G(GTG)-1]. 

35 Using the matrix Ŝ ( equation 2) and the original matriz D, the  matriz G was  re-estimated by 

36 least squares as  :

37 Ĝ  = ( Ŝ + D)T                  (3)

38 The generalized inverse of G  can be obtained only if the kinetic profiles of the sample 

39 components are different, as in the present case. The generalized inverse of  S could  be obtained 

40 because the matrix augmentation broke the linear dependence of the individual spectral profiles.

41 Finally, E was calculated applying equation (1) using matrix D and the estimation of G and Ĝ . 

42 These steps could  be implemented in an alternating least squares cycles , so that in each iteration new 

43 S and G matrices were obtained. During the iterative recalculation of S and G a series of constraints 

44 were applied to improve these solutions, to give them a physical meaning and to limit their possible 

45 number for the same data fitting, such as  1) non-negativity for spectral and kinetic profiles, 2) 

46 stoichiometric relations among different chemical species in equilibrium or in kinetics. Iterations 
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47 continued until an optimal solution was obtained that fulfills the postulated constraints and the 

48 established convergence criteria.  

49 After MCR-ALS decomposition of matrix D, concentration information contained in S can be 

50 used for quantitative predictions, by first defining the analyte concentration score as the area under the 

51 profile for the ith. sample.

52 Calibration samples are always within those employed to build the augmented matrix D. Their 

53 associated scores can be used to build a pseudo-univariate calibration graph against the nominal analyte 

54 concentrations. Prediction of analyte concentration in unknowns then proceeds by interpolation of the 

55 corresponding analyte scores in the calibration graph .4 

56            

57  U-PLS

58 Unfolded partial least squares (U-PLS) operates in a similar way to partial least squares-1 (PLS-

59 1), except that second-order data are first vectorized or unfolded along one of the data dimensions, and 

60 then a conventional partial least-squares (PLS) model is built using these unfolded data and the 

61 nominal analyte concentrations. 6 , 7 

62 The  I calibration data matrices are first vectorized into JK×1 vectors, and then a usual PLS 

63 model is built using these data together with the vector of calibration concentrations y (size I×1). This 

64 provides a set of loadings P and weight loadings W (both of size JK×A, where A is the number of 

65 latent factors), as well as regression coefficients v (size A×1) 

66 The parameter A can be selected by techniques such as leave-one-out cross-validation .8 

67  Notice that PLS is a latent variable method, and hence no prior information as to the spectral or 

68 time evolution of the analyte are in principle required for its successful operation.

69  If no unexpected components are present in the test sample, v could be used to estimate the 

70 analyte concentration according to
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71                                                   yu = tu
T v                                 (4)

72 where tu is the test sample score, obtained by projecting the vectorized data for the test sample 

73 vec(Xu) onto the space of the A latent factors:

74                                                 tu = (WT P)–1 WT vec(Xu)             (5)

75  where vec(·) implies the vectorization operator.

76

77  N-PLS

78 Multiway regression methods such as N-PLS extend the tradicional PLS algorithm to higher orders, 

79 using the multidimensional structure of the data for model building and prediction .6  

80 The  tridimensional matrix X (I x J x K) is decomposed in  a series of triads. In the case of 

81 three-way data,  the model is given by the following equation:

82  

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1
                                                                         (6)

83 where xijk  is the  variation of absorbance intensity for sample i at wavelength wavelength j and 

84 time k, N is the number of components, t is an element of the score matrix T  and,  two  w  are  

85 elements of the two loading matrices W, one in spectral dimension  wJ (J x 1) and the other for 

86 temporal dimension  wK (K x 1), and eijk is a residue not fitted by the model. The model finds the scores 

87 yielding maximum covariance with analyte concentrations as the dependent variable. The advantage of 

88 using N-PLS over bidimensional regression is a stabilization of the decomposition involved in Eq. (6), 

89 which potentially gives increased interpretability and better predictions

90 The algorithm used the data matrix of the I calibration samples within the concentration vector 

91 Y (Ix1) for obtaining loading and the regression coefficient  v (size Ax1). As U-PLS, if no unexpected 
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92 components are present in the test sample, v could be used to estimate the analyte concentration 

93 according to

94                                                     yu = tu
T v                                                    (7)

95 Cross-validation can also be employed to estimate the number of calibration latent variables. 8

96

97 N-PLS/RBL and U-PLS/RBL

98 If unexpected constituents occur in a test sample, neither the U-PLS nor N-PLS  scores for the 

99 latter sample can be used for analyte prediction using the trained model. In this case, it is necessary to 

100 resort to a technique which is able to: (1) detect the new sample as an outlier, indicating that further 

101 actions are necessary before prediction, and (2) isolate the contribution of the unexpected component 

102 from that of the calibrated analytes, in order to recalculate appropriate scores for the test sample. U-

103 PLS and N-PLS will consider a sample as an outlier if the residuals of the test data reconstruction (sp) 

104 are abnormally large in comparison with the typical instrumental noise. 

105 sp = || ep || / (JK–A)1/2 = || vec(Xu) – P (WT P)–1 WT vec(Xu) || / (JK–A)1/2 =

106     = || vec(Xu) – P tu || / (JK–A)1/2                                                        (8)

107 || . || indicates the Euclidean norm

108 In such  a case, residual bilinearization can be employed to model the presence of unexpected 

109 sample components using principal component analysis (PCA) or singular value decomposition (SVD), 

110 which allows one to estimate profiles for the unexpected components in the three data dimensions.7

111 For a single unexpected component the expression is :

112 vec(Xu) = P tu + vec[gunx bunx (cunx)T] + eu         (9)
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113 Where bunx and cunx are the left and right eigenvectors of Ep and gunx is a scaling factor 

114 appropriate for SVD analysis:

115 (gunx, bunx, cunx) = SVD1(Ep)                             (10)

116 where Ep is the J x K matrix obtained after reshaping the JK x1 ep vector of eq (8) and SVD1 

117 indicates taking the first principal component.

118 The RBL procedure consists in keeping constant the matrix of calibration loadings (P), and 

119 varying the test sample scores (tu) until the norm of the residual vector  ║eu ║ is minimized in eq (9) 

120 using a Gauss-Newton procedure, so that a final value of tu vector is obtained and applied for 

121 calculating the analyte concentration using eq.(8). So, the number of unexpected components (Nunx) can 

122 be determined  by comparing the final residuals su with the instrumental noise level, with su given by:

123                                   2/1
uns

u
u NAJK

eS


                                                        (11)

124          where eu is calculated  from Eq. (9). Typically, a plot of su computed for trial values of 

125 Nunx will show decreasing values, starting at sp when Nunx = 0, until it stabilizes at a value compatible 

126 with the experimental noise, allowing to locate the correct number of unexpected components. 7, 9 

127 However, some reports that have been recently published in scientific literature suggest that the number 

128 of unexpected components could be determined by compare value of the property of interest (sugar 

129 concentration in the present case) with those obtained applying a referente method .10

130 Once the RBL step is finished, and the correct test sample scores have been found, they are 

131 employed to provide the analyte concentration as is regularly done in all PLS models. 

132

133
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134 PLS/RBL-LD

135 However, this classical RBL procedure is not appropriate when the unexpected components 

136 have profiles that are identical to the analyte profile in one of the data dimensions.11,12  

137 In these cases a new RBL procedure for linear dependency (RBL-LD) is proposed . The underlying 

138 idea is similar to that of the classical RBL method: to minimize the norm of the residual vector eu, 

139 computed by fitting the test data to the sum of the relevant contributions (i.e., the part that is modeled 

140 by the current calibration and the contribution from the interfering agents) but taking into account the 

141 identical profiles in one of the data dimensions. This can be done either by modeling the residuals with 

142 MCR-ALS or with PARAFAC with linear dependency (PARALIND) instead of using SVD or PCA.  12

143

144 Software 

145  All routines employed to carry out the calculations described in this paper were written in 

146 MATLAB 7.0.14   A Second-order multivariate calibration toolbox January 2013   For assistance read 

147 the document 'mvc2_gui_manual.pdf' and Chemom. Intell. Lab. Syst. 96 (2009) 246 -25115 as well as 

148 an MCR-ALS Multivariate curve resolution- alternating least-squares written by Alejandro Olivieri 

149 Department of Analytical Chemistry University of Rosario Argentina were used  in the persent work 

150 Moreover, the N-PLS code is available on the internet at http://www.models.life.ku.dk/source/   PLS/RBL 

151 is available from the authors on request, including a useful graphical user interface for data input and 

152 parameter setting, of the type already described for first-order multivariate calibration 22,  29, 56, and 

153 which also works for PARAFAC. 

154 U-PLS/RBL is available at www.chemometry.com , including a graphical user interface. 6.7, 15  

155 MCR-ALS was implemented using the graphical interface provided by  Prof..Romá Tauler  in his web 

156 page http://www.ub.edu/mcr/welcome.html. 16    

157
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158 3.4 Figures of merit 

159 Figures of merit such as sensitivity (SEN), analytical sensitivity (γn) and limit of detection 

160 (LODn) are regularly employed for method comparison. 

161  MCR-ALS:   Sensitivity can be calculated as:

162      2
1

1   ncalunxunx
T
Cal

T
nnSSEN

163 Being: Sn the slope of MCR-ALS pseudo-univariate plot divided by the number of data point 

164 in each individual data matrix in the augmented mode, δn  column vector (size Ncalx1)  where Ncal is 

165 the number of MCR-ALS components present in the calibartion set, Zcal profiles in the nonaugmented 

166 data mode for the components present in the calibration set, Zunk profiles in the nonaugmented data  

167 mode for the unexpected sample components present in the tests samples.7 Limit of detection and 

168 quantitation can be computed using the traditional univariate approach.17 

169

170 U-PLS and N-PLS 

171 Sensitivity can be calculated in  cases when the second order adavantage operates as follows:     

172       2/11

susuns,c
T

sussusuns,b
T

sus *SEN



nnns CPCBPB                                  

173

174 where SEN is the sensitivity for component n, sn is the integrated total signal for component n at 

175 unit concentration, Bsus and Csus are the matrices containing the profiles for all suspected components 

176 (i.e., those present in the training set of samples) in each data dimension, ‘nn’ implies selecting the 
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177 (n,n) element corresponding to the n th. analyte of interest, ‘*’ implies the Hadamard matrix product, 

178 and the projection matrices Pb,uns and Pc,uns are given by:

179            Pb,uns = I − BunsBu+ns                                                                                                                                 

180 Pc,uns = I − C unsC u+ns                                                                                                                                

181 where Buns and Cuns contain the profiles for the unsuspected components as columns.

182 Notice that when the second-order advantage is employed, this equation  implies that SEN for 

183 component  n  is sample-specific and cannot be defined for the multivariate method as a whole. In such 

184 cases an average value for a set of samples can be estimated and reported .18 

185 In the case of PLS/RBL, the appropriate expresión for the estimation of sensitivity is : 7 , 18

186 SENn = 1 / || (Peff
+)T v ||           

187  where v is the (A×1) latent vector of regression coefficients for the PLS model, and Peff is a 

188 matrix given by: 

189

190               Peff = (Pc,unsPb,uns)T P                                             

191 where P is the (JK×A) loading matrix provided by the  PLS model, Pc,uns and Pb,uns  have the 

192 same meaning as above,  and ⊗ implies the Kronecker product.

193  More useful than SEN seems to be the analytical sensitivity γn, defined, in analogy with 

194 univariate calibration, as the quotient between SEN and the instrumental noise level. Its inverse 

195 establishes the minimum difference of concentration which can be appreciated across the lineal range, 

196 and is independent on instrument or scale.7 So that, the analytical sensitivity is suitable for comparing 

197 analytical methods based on different response nature.   

198  Moreover, the limit of detection (LOD) can be calculated as a interval obtaining the lower and 

199 an upper limits of it , propopsed by Olivieri et al . in a recently publication 19  
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200          LODmin = 3.3 [SEN–2 var(x) + h0min SEN–2 var(x) + h0min var(ycal)]1/2              

201          LODmax = 3.3 [SEN–2 var(x) + h0max SEN–2 var(x) + h0max var(ycal)]1/2

202  Being,  

 

   where yi is the centered concentration for the ith calibration sample , 



 I

i
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203 meanwhile the upper limit can be estimated as  h0max = max(h0cal ), in which 

204  where hcal and ycal are the leverage and (centered) analyte concentration 
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205 of a generic calibration sample.  LODmin and LODmax depend on the leverage, which is a function of the 

206 calibration score matrix T so that the limits of the LOD will depend on  the calibration design and the 

207 number of calibration latent variables.19 
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