Cy5/BHQ dye–quencher pairs in fluorogenic qPCR probes: effects of charge and hydrophobicity

Valentina M. Farzan,^{a,b} Ilya O. Aparin,^c Olga A. Veselova,^a Alexander T. Podkolzin,^a German A. Shipulin,^a Vladimir A. Korshun,^{c,d} Timofei S. Zatsepin,^{*,a,b,e}

^a Central Research Institute of Epidemiology, Novogireevskaya 3a, 111123 Moscow, Russia

^b Skolkovo Institute of Science and Technology, 4 Nobel Street, Innovation Center "Skolkovo", 143026 Skolkovo, Russia

^c Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia

^d Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya 11, 119867 Moscow, Russia

^e Department of Chemistry, M.V.Lomonosov Moscow State University, Leninskie Gory 1-3, 119992 Moscow, Russia

* Corresponding author. Tel/fax +(7)495-939-5411. E-mail address: <u>t.zatsepin@skoltech.ru</u>

Fig. S1. A) UV/Vis spectra of model T_{20} oligonucleotides modified with BHQ2 and BHQ3 quenchers; B) normalized BHQ2 and BHQ3 absorbance vs Cy5 and disulfo-Cy5 fluorescence on model T_{20} oligonucleotides.

Fig. S2-1. RP-HPLC traces of reaction mixture - sCy5-azide conjugation with <u>unpurified</u> G3z-BHQ2 oligonucleotide

Fig. S2-2. RP-HPLC traces of reaction mixture - Cy5-azide conjugation with **<u>purified</u>** G3z-BHQ3 oligonucleotide

#	Name	Sequence, 5'→3'		Detected mass
1	Cy5-B2-G1z	Cy5-CTGAGCTTTAGTYAAGGCAAATAATGCTCAG-BHQ2	10936.2 10951.3	10943.7 10958.7
2	Cy5-B2-G2z	Cy5-CAGCGTCTAGTGATCCCGTTATTGGC-BHQ2	9346.2	9354.4
3	Cy5-B2-G3z	Cy5-TACCCAACTGAAGCAGCAACAGGGTA-BHQ2	9375.3	9383.5
4	Cy5-B2-G4z	Cy5-CTGAACYTGTCGGCCATCCTTTGGTT-BHQ2	9297.2 9312.2	9305.4 9320.4
5	Cy5-B2-P4z	Cy5-CACTCTGACTACTACCTTTAAACAGAGCG-BHQ2	10198.8	10206.5
6	Cy5-B2-P8z	Cy5-GGACTGCAGTCRTTGCTGTTGAAC-BHQ2	8776.8 8792.8	8785.3 8801.3
7	sCy5-B2-G1z	sCy5-CTGAGCTTTAGTYAAGGCAAATAATGCTCAG-BHQ2	11094.1 11109.2	11089.6 11104.6
8	sCy5-B2-G2z	sCy5-CAGCGTCTAGTGATCCCGTTATTGGC-BHQ2	9504.1	9500.3
9	sCy5-B2-G3z	sCy5-TACCCAACTGAAGCAGCAACAGGGTA-BHQ2	9533.2	9529.3
10	sCy5-B2-G4z	sCy5-CTGAACYTGTCGGCCATCCTTTGGTT-BHQ2	9455.1 9470.1	9451.3 9466.3
11	sCy5-B2-P4z	sCy5-CACTCTGACTACTACCTTTAAACAGAGCG-BHQ2	10356.7	10352.5
12	sCy5-B2-P8z	sCy5-GGACTGCAGTCRTTGCTGTTGAAC-BHQ2	8934.7 8950.7	8931.2 8947.2
13	Cy5-B3-G1z	Cy5-CTGAGCTTTAGTYAAGGCAAATAATGCTCAG-BHQ3	11196.7 11211.7	11203.9 11218.9
14	Cy5-B3-G2z	Cy5-CAGCGTCTAGTGATCCCGTTATTGGC-BHQ3	9606.6	9614.7
15	Cy5-B3-G3z	Cy5-TACCCAACTGAAGCAGCAACAGGGTA-BHQ3	9635.7	9643.6
16	Cy5-B3-G4z	Cy5-CTGAACYTGTCGGCCATCCTTTGGTT-BHQ3	9557.6 9572.6	9565.5 9580.5
17	Cy5-B3-P4z	Cy5-CACTCTGACTACTACCTTTAAACAGAGCG-BHQ3	10459.2	10466.8
18	Cy5-B3-P8z	Cy5-GGACTGCAGTCRTTGCTGTTGAAC-BHQ3	9037.3 9053.3	9045.5 9061.5
19	sCy5-B3-G1z	sCy5-CTGAGCTTTAGTYAAGGCAAATAATGCTCAG-BHQ3	11354.6 11369.6	11349.9 11364.9
20	sCy5-B3-G2z	sCy5-CAGCGTCTAGTGATCCCGTTATTGGC-BHQ3	9764.5	9760.4
21	sCy5-B3-G3z	sCy5-TACCCAACTGAAGCAGCAACAGGGTA-BHQ3	9793.6	9789.5
22	sCy5-B3-G4z	sCy5-CTGAACYTGTCGGCCATCCTTTGGTT-BHQ3	9715.5 9730.5	9711.4 9726.4
23	sCy5-B3-P4z	sCy5-CACTCTGACTACTACCTTTAAACAGAGCG-BHQ3	10617.1	10612.7
24	sCy5-B3-P8z	sCy5-GGACTGCAGTCRTTGCTGTTGAAC-BHQ3	9195.2 9211.2	9191.4 9207.4

 Table S1. Taqman probes and their ESI-MS data.

Fig. S3-2. HPLC profile and ESI MS of Cy5-B2-G2z probe.

¢

Fig. S3-3. HPLC profile and ESI MS of Cy5-B2-G3z probe.

Fig. S3-4. HPLC profile and ESI MS of Cy5-B2-G4z probe.

Fig. S3-6. HPLC profile and ESI MS of Cy5-B2-P8z probe.

0.0

m/z

Fig. S3-8. HPLC profile and ESI MS of sCy5-B2-G2z probe.

Fig. S3-16. HPLC profile and ESI MS of Cy5-B3-G4z probe.

Fig. S3-17. HPLC profile and ESI MS of Cy5-B3-P4z probe.

Fig. S3-20. HPLC profile and ESI MS of sCy5-B3-G2z probe.

Fig. S3-21. HPLC profile and ESI MS of sCy5-B3-G3z probe.

Fig. S3-22. HPLC profile and ESI MS of sCy5-B3-G4z probe.

Fig. S3-24. HPLC profile and ESI MS of sCy5-B3-P8z probe.

Probe	Dye/quencher	Tm, °C	
	Cy5/BHQ2	64.3	
0 4	sulfo Cy5/BHQ2	68.9	
G1	Cy5/BHQ3	62.3	
	sulfo Cy5/BHQ3	67.4	
	Cv5/BHQ2	50.2	
	sulfo Cv5/BHO2	46.2	
G2	Cv5/BHQ3	51.7	
	sulfo Cy5/BHQ3	48.2	
	Cv5/BHQ2	58.8	
	sulfo Cv5/BHQ2	62.8	
G3	Cv5/BHQ3	54.2	
	sulfo Cy5/BHQ3	58.8	
	Cy5/BHQ2	50.7	
~ /	sulfo Cy5/BHQ2	46.2	
G4	Cy5/BHQ3	50.2	
	sulfo Cy5/BHQ3	44.1	
	Cy5/BHQ2	48.7	
54	sulfo Cy5/BHQ2	52.7	
P4	Cy5/BHQ3	48.7	
	sulfo Cy5/BHQ3	51.2	
	Cy5/BHQ2	58.3	
DO	sulfo Cy5/BHQ2	55.3	
Põ	Cy5/BHQ3	62.3	
	sulfo Cy5/BHQ3	59.8	
	80		т
	70 -		
	60 -		T
	⊐. 50 -		
	ເຊ ອີ 40 - <mark>1</mark>		L
	ğ 30 -	T	
	Se 20		i i

0 -10 -20

G1z

G2z

 Table S2. Melting of Cy5/sCy5–BHQ2/BHQ3 labeled probes with fluorescence detection.

Fig S4. Fluorescence background (negative) and light-up (positive) of structured and molten probes; Cy5-B2, SCy5-B2, Cy5-B3, SCy5-B3.

G4z

P4z

P8z

G3z

Fig. S5-1. Mfold secondary structure, raw and processed melting and qPCR data for G1z probes.

Fig. S5-2. Mfold secondary structure, raw and processed melting and qPCR data for G2z probes.

Fig. S5-3. Mfold secondary structure, raw and processed melting and qPCR data for G3z probes.

Fig. S5-4. Mfold secondary structure, raw and processed melting and qPCR data for G4z probes.

qPCR - raw data

qPCR - normalized data

Fig. S5-5. Mfold secondary structure, raw and processed melting and qPCR data for P4z probes.

Fig. S5-6. Mfold secondary structure, raw and processed melting and qPCR data for P8z probes.

Cycle

Melting

Unit No.2 0,2 0,1

Threshold

Cycle

Fig. S6. qPCR data for **Cy5-B2**, sCy5-B2, Cy5-B3, and sCy5-B3 dual labeled probes; plot: dependence of quantification cycle number on the logarithm of DNA target concentration. For numerical values see Table S3[†].

Table S3. qPCR data for	• Cy5-B2 , s C y5-B2,	Cy5-B3, and sCy5-B3	dual labeled probes.
-------------------------	-------------------------------------	---------------------	----------------------

Probe		qPCR data				
	Probe sequence, 5'-3'	Target DNA, copies/ reaction	Cq, cycles			
			Cy5-B2	sCy5-B2	Cy5-B3	sCy5-B3
G1z	Dye -CTG AGC TTT AGT YAA GGC AAA TAA TGC TCA G -Quencher	$\frac{1.0 \cdot 10^9}{1.0 \cdot 10^6} \\ 1.0 \cdot 10^3$	15.9±0.2 27.3±0.3 38.2±0.4	17.7±0.3 28.0±0.3 38.0±0.4	14.1±0.2 25.6±0.3 37.0±0.3	16.7±0.1 28.0±0.2 39.0±0.4
G2z	Dye -CAG CGT CTA GTG ATC CCG TTA TTG GC- Quencher	$\frac{1.0 \cdot 10^9}{1.0 \cdot 10^6} \\ 1.0 \cdot 10^3$	16.2±0.2 26.5±0.2 37.0±0.3	17.7±0.3 28.0±0.2 38.0±0.3	15.7±0.3 25.9±0.2 36.1±0.3	16.7±0.2 26.7±0.4 36.5±0.3
G3z	Dye- TAC CCA ACT GAA GCA GCA ACA GGG TA- Quencher	$\frac{1.0 \cdot 10^9}{1.0 \cdot 10^6} \\ 1.0 \cdot 10^3$	15.3±0.2 25.7±0.3 35.4±0.3	16.3±0.3 26.4±0.3 37.0±0.3	15.4±0.3 25.6±0.3 35.7±0.3	15.4±0.3 25.8±0.3 35.7±0.3
G4z	Dye -CTG AAC YTG TCG GCC ATC CTT TGG TT- Quencher	$\frac{1.0 \cdot 10^9}{1.0 \cdot 10^6} \\ 1.0 \cdot 10^3$	13.3±0.1 23.6±0.2 33.6±0.3	13.9±0.3 24.6±0.3 34.7±0.3	12.5±0.3 22.6±0.3 33.2±0.3	13.3±0.3 23.6±0.3 33.4±0.3
P4z	Dye- CAC TCT GAC TAC TAC CTT TAA ACA GAG CG- Quencher	$ \begin{array}{r} 1.0 \cdot 10^8 \\ 1.0 \cdot 10^5 \\ 1.0 \cdot 10^2 \end{array} $	22.7±0.1 33.4±0.3	23.7±0.1 34.0±0.2	22.3±0.2 33.1±0.2 41.0±0.5	23.4±0.2 34.0±0.2
P8z	Dye- GGA CTG CAG TCR TTG CTG TTG AAC- Quencher	$\frac{1.0 \cdot 10^9}{1.0 \cdot 10^6} \\ 1.0 \cdot 10^3$	14.1±0.2 24.3±0.2 35.2±0.3	14.8±0.3 25.2±0.2 35.7±0.3	13.5±0.3 23.8±0.3 35.0±0.3	14.2±0.4 24.5±0.2 36.1±0.3

Fig. S7. Fluorescence light-up (positive) and background (negative) in qPCR; — – Cy5-B2, — – SCy5-B2, — – Cy5-B3, — – SCy5-B3.