Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2016

#### **Electronic Supplementary Information (ESI)**

for

# Rapid detection of hydrazine in almost wholly water solution and in

### living cells with a new colorimetric and fluorescent turn-on probe

Qisong Zhai, Weiyong Feng, and Guoqiang Feng\*

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China. E-mail:

gf256@mail.ccnu.edu.cn

## CONTENTS

| 1. Structure characterizations of probe 1                         | Page S2-S3             |
|-------------------------------------------------------------------|------------------------|
| 2. Additional spectra and data                                    | <sup></sup> Page S4-S8 |
| 4. Comparison of some representative fluorescent hydrazine probes | Page S8-S9             |



1. Structure characterizations of probe 1







#### 2. Additional spectra and data



Fig. S1. (a) UV-Vis and (b) fluorescence spectra of probe 1 (10  $\mu$ M) and NI-OH (10  $\mu$ M) in PBS buffer (10 mM, pH 7.4) with 2% CH<sub>3</sub>CN at 37 °C. For fluorescence,  $\lambda_{ex} = 450$  nm, slit width:  $d_{ex} = 5$  nm,  $d_{em} = 10$  nm.



**Fig. S2.** Kinetic curve of probe **1** (10  $\mu$ M) with hydrazine (50  $\mu$ M) in PBS buffer (10 mM, pH 7.4) with 2% CH<sub>3</sub>CN at 37 °C. The reaction was monitored by absorbance change at 445 nm and the data were fitted by a first-order reaction scheme as shown in the figure.



Fig. S3. Calculated charge distribution map of probe 1 by DFT (density functional theory).



Fig. S4. The fluorescent responses of probe 1 (10  $\mu$ M, black) and probe 1 with hydrazine (50  $\mu$ M, red) at 558 nm under different pHs. All experiment was performed in PBS buffer (10 mM) with with 2% CH<sub>3</sub>CN at 37 °C and each spectrum was obtained 10 min after mixing.  $\lambda_{ex} = 450$  nm, slit width:  $d_{ex} = 5$  nm,  $d_{em} = 10$  nm.



Fig. S5. Fluorescence responses of probe 1 (10  $\mu$ M) at 558 nm upon addition of hydrazine (0-90  $\mu$ M) in PBS buffer (10 mM, pH 7.4) with 2% CH<sub>3</sub>CN (v/v) at 37 °C. Final concentration of hydrazine: 0, 4, 8, 12, 16, 20, 25, 30, 33, 35, 37, 39, 40, 42, 44, 45, 50, 60, 70, 80 and 90  $\mu$ M.



**Fig. S6.** Fluorescence intensity changes of probe **1** (10 μM) at 558 nm toward 100 μM (except: hydrazine 50 μM) of various analytes including: 1. none, 2. hydrazine, 3. Cys, 4. Hcy, 5. GSH, 6.NaF, 7. NaCl, 8. NaBr, 9. NaI, 10. Na<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, 11. Na<sub>2</sub>SO<sub>3</sub>, 12. Na<sub>2</sub>CO<sub>3</sub>, 13. NaHS, 14. NaNO<sub>3</sub>, 15. NaSCN, 16. NaAc, 17. NH<sub>3</sub>·H<sub>2</sub>O, 18. NH<sub>2</sub>OH·HCl, 19. H<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, 20. HOCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, 21. C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>, 22. C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>NH<sub>2</sub>, 23. NaClO, 24. H<sub>2</sub>O<sub>2</sub>, 25. NaNO<sub>2</sub>, 26. <sup>*i*</sup>BuOO', 27. <sup>•</sup>OH, 28. NaN<sub>3</sub>, 29. Na<sub>3</sub>PO<sub>4</sub>, 30. Na<sub>2</sub>SO<sub>4</sub>, 31. Na<sub>2</sub>S. All experiments were performed in PBS buffer (10 mM, pH 7.4) with 2% CH<sub>3</sub>CN at 37 °C, and each spectrum was obtained 10 min after addition of an analyte.  $\lambda_{ex} = 450$  nm, slit width:  $d_{ex} = 5$  nm,  $d_{em} = 10$  nm.



Fig. S7. (a) Absorption spectra changes of probe 1 (10  $\mu$ M) toward various analytes (100  $\mu$ M, except hydrazine 50  $\mu$ M). (b) Absorbance intensity changes of probe 1 (10  $\mu$ M) at 445 nm toward 100  $\mu$ M of various analytes including: 1. none, 2. Hydrazine (50  $\mu$ M), 3. Cys, 4. Hcy, 5. GSH,

6.NaF, 7. NaCl, 8. NaBr, 9. NaI, 10. Na<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, 11. Na<sub>2</sub>SO<sub>3</sub>, 12. Na<sub>2</sub>CO<sub>3</sub>, 13. NaHS, 14. NaNO<sub>3</sub>, 15. NaSCN, 16. NaAc, 17. NH<sub>3</sub>·H<sub>2</sub>O, 18. NH<sub>2</sub>OH·HCl, 19. H<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, 20. HOCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, 21. C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>, 22. C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>NH<sub>2</sub>, 23. NaClO, 24. H<sub>2</sub>O<sub>2</sub>, 25. NaNO<sub>2</sub>, 26. 'BuOO', 27. 'OH, 28. NaN<sub>3</sub>, 29. Na<sub>3</sub>PO<sub>4</sub>, 30. Na<sub>2</sub>SO<sub>4</sub>, 31. Na<sub>2</sub>S. All experiments were performed in PBS buffer (10 mM, pH 7.4) with 2% CH<sub>3</sub>CN at 37 °C, and each spectrum was obtained 10 min after addition of an analyte.



**Fig. S8.** (a) Emission color changes and (b) color changes of probe **1** (10  $\mu$ M) upon addition of 100  $\mu$ M (except hydrazine 50  $\mu$ M) of different analytes in PBS buffer (10 mM, pH 7.4,) with 2% CH<sub>3</sub>CN (v/v) at room temperature. Each vial from left to right: blank, hydrazine, Cys, Hcy, GSH, NaF, NaCl, NaBr, NaI, Na<sub>2</sub>S<sub>2</sub>O<sub>7</sub>, Na<sub>2</sub>SO<sub>3</sub>, NaAc, NaHS, NaSCN, NH<sub>3</sub>·H<sub>2</sub>O, NH<sub>2</sub>OH·HCl, H<sub>2</sub>NCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, HOCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>, C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>NH<sub>2</sub>, NaClO, H<sub>2</sub>O<sub>2</sub>, NaNO<sub>2</sub>, <sup>'</sup>BuOO' and <sup>'</sup>OH). The fluorescent color changes were observed under a potable 365 nm UV lamp. Visual color changes were observed under ambient light.



**Fig. S9.** (a) Fluorescence spectra changes of probe **1** (10 μM) toward various analytes (100 μM, except hydrazine, 50 μM). (b) Fluorescence intensity changes of probe **1** (10 μM) at 558 nm toward 100 μM (except: hydrazine 50 μM) of various analytes including: 1. none, 2. hydrazine, 3. K<sup>+</sup>, 4. Ca<sup>2+</sup>, 5. Na<sup>+</sup>, 6. Mg<sup>2+</sup>, 7. Zn<sup>2+</sup>, 8. Cu<sup>2+</sup>, 9. Trp, 10. Phe, 11. Gln, 12. Ala, 13. Leu, 14. Thr, 15. Ser, 16. Asp, 17. Ile, 18. Met, 19. Lys, 20. Gly, 21. Arg, 22. Tyr, 23. Pyr, 24. His. All experiments were performed in PBS buffer (10 mM, pH 7.4) with 2% CH<sub>3</sub>CN at 37 °C, and each spectrum was obtained 10 min after addition of an analyte.  $\lambda_{ex} = 450$  nm, slit width:  $d_{ex} = 5$  nm,  $d_{em} = 10$  nm.



**Fig. S10.** Percentage of viable HeLa cells after treatment with indicated concentrations of probe after 24 hours. The cell viability was observed via MTT assay.

| Probes    | Detection<br>system                               | Range of linear<br>correlation / µM | LOD                   | Time / min | Ref.                                    |
|-----------|---------------------------------------------------|-------------------------------------|-----------------------|------------|-----------------------------------------|
|           | DMSO-HEPES<br>buffer (1:4, v/v)                   | 0-50                                | 0.17 μM<br>(5.4 ppb). | 10         | Anal. Chem.<br>2015, 87, 9101           |
|           | CH <sub>3</sub> CN-HEPES<br>buffer (9:1, v/v)     | 1-150                               | 58 nM                 | -          | Anal. Chim.<br>Acta<br>2015,893,84      |
| Br 0 0    | CH <sub>3</sub> CN-HEPES<br>buffer (1:9, v/v)     | 10-200                              | 2 μΜ                  | 60         | Biosens.<br>Bioelectron.<br>2014,58,282 |
|           | H <sub>2</sub> O-DMSO<br>(4:6, v/v)               | 1-50                                | 0.3 ppb               | 2          | Chem.<br>Commun.,<br>2014, 50, 1485     |
|           | H <sub>2</sub> O-DMSO<br>(3:7, v/v)               | 0.1-1.0                             | 3.2 ppb               | 0.5        | Anal. Chem.,<br>2014, 86, 4611          |
| CF3<br>OH | H <sub>2</sub> O-CH <sub>3</sub> CN<br>(1:9, v/v) | 0-5                                 | 3.2 ppb               | 60         | Chem. Sci.<br>2013, 4, 4121             |
|           | H <sub>2</sub> O-THF (1:1,<br>v/v)                | 0.06-0.12                           | 0.11 ppb              | 3          | Dyes Pigm.<br>2013, 99, 966             |
|           | Tris.HCl buffer-<br>DMF (3/7, v/v)                | 5-20                                | 12.191 nM             |            | J. Mater. Chem.<br>B, 2014, 2,<br>1846  |

3. Table S1. Comparison of some representative fluorescent hydrazine probes

|                       | DMSO-acetate<br>buffer (9:1, v/v)                    | 0.5-3.5   | 13.4 ppb                                | 20 | Chem.<br>Commun.,<br>2012,48, 8117      |
|-----------------------|------------------------------------------------------|-----------|-----------------------------------------|----|-----------------------------------------|
|                       | DMSO-HEPES<br>buffer (9:1, v/v)                      | 0-5       | 6.01 ppb                                | 60 | J. Mater. Chem.<br>B, 2014,2, 7344      |
|                       | DMSO- Tris<br>buffer solution<br>(1 : 1, v/v)        | 0-25      | 2.9 ррв                                 | 10 | Org. Biomol.<br>Chem. 2013,<br>11, 2961 |
|                       | DMSO- acetate<br>buffer (7:3, v/v)                   | 0-14      | 2.46 µM                                 | 15 | Org. Lett.,<br>2011,13,5260             |
|                       | DMSO-acetate<br>buffer (9:1, v/v)                    | 10.0-80.0 | 0.81 ppb                                | 40 | Org. Lett.,<br>2013, 15, 4022           |
| Br<br>of o N<br>S     | CH <sub>3</sub> CN-HEPES<br>buffer (2:3, v/v)        | 1-9.5     | 2.2 ppb                                 | 15 | Org. Lett.,<br>2013, 15, 5412           |
| Br, C, C, C, C, C, Br | CH <sub>3</sub> OH–H <sub>2</sub> O<br>(1 : 1, v/v,) | 2-39      | 38.81nM                                 | 15 | RSC Adv.,<br>2014, 4, 14210             |
|                       | DMSO-HEPES<br>buffer (7:3, v/v)                      | 0-10      | 1.87 µM                                 | -  | RSC Adv.,<br>2015, 5, 58228             |
|                       | CH3CN                                                | 0-5.5     | 0.2 μM (7 ppb) in<br>CH <sub>3</sub> CN |    | Sens. Actuators,<br>B 2014,199,93       |
| o o Br                | DMSO-PBS<br>buffer<br>(9:1, v/v)                     | 0-50      | 0.15 μM<br>(4.8 ppb)                    | 30 | Sens. Actuators,<br>B 2015,216,141      |
|                       | PBS buffer<br>(2% CH <sub>3</sub> CN,<br>v/v)        | 0-20      | 0.10 µМ<br>(~3 ppb)                     | 10 | This work                               |