Supporting Information

Electrochemical sensor based on fullerene nanorods for detection of paraben an endocrine disruptor

Jahangir Ahmad Rather^{*}^a, Abir Jumaa Al Harthi^a, Emad A. Khudaish^a, Ahsanulhaq Qurashi^b, Abdul Munam^a, Palanisamy Kannan^c

^a Department of Chemistry, Sultan Qaboos University, Box 36, Al-Khod 123, Oman
^b Center of Research Excellence in Nanotechnology and Department of Chemistry, King Fahd
University of Petroleum & Minerals Dhahran 31261, Saudi Arabia

^c Singapore Center for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore-637551

Corresponding author

Dr. Jahangir Ahmad Rather *(Member of RSC)* Department of Chemistry Sultan Qaboos University, Oman. Email: <u>Jahangir@squ.edu.om</u> Tel: +968-24141491



Figure S1: Electrochemical reduction of nitrophenyl diazonium salt ($Cl^{-}N_{2}^{+}-Ph-NO_{2}$) at GCE (scan rate 100 mVs⁻¹). The reduction peak observed at -0.07 V corresponds to electrochemical reduction of nitrophenyl diazonium salt.

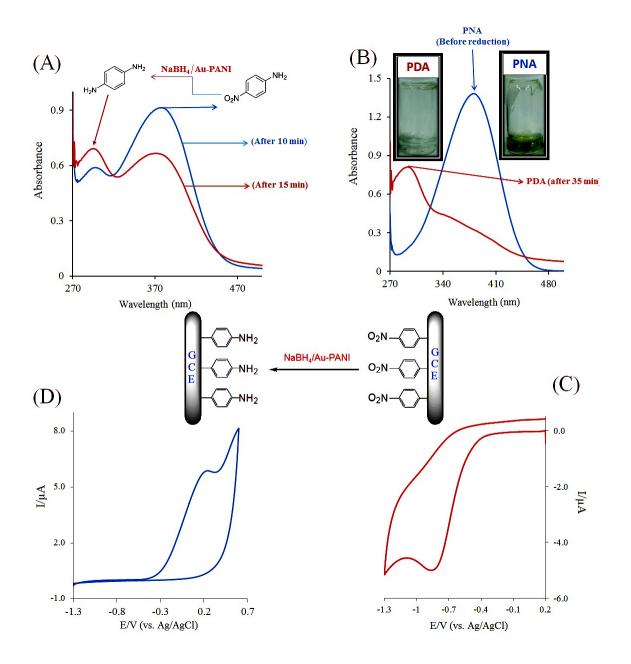


Figure S2: UV-vis spectrum of *p*-nitroaniline (PNA) reduction to *p*-phenylenediamine (PDA) after addition of NaBH₄/Au–PANI system observed before (A) and after (B) reduction process. Cyclic voltammograms (CV) are confirming the presence of nitrophenyl group at GCE–Ph–NO₂ (C) and phenylamine group formed at GCE–Ph–NH₂ (D) after reduction with NaBH₄/Au–PANI system.

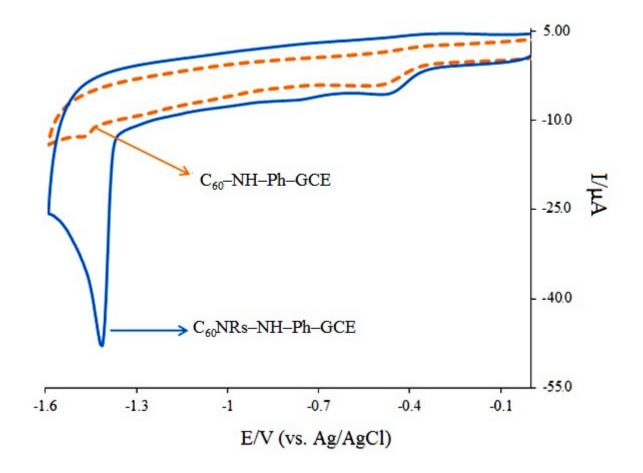


Figure S3: Electrochemical reduction (ER) of C_{60} NRs–NH–Ph–GCE and C_{60} –NH–Ph–GCE in 1.0 M KOH at a scan rate of 10 mVs⁻¹.