-----Electronic Supporting Information-----

A turn-on fluorescent probe for phytic acid based on ferric ionsmodulated glutathione-capped silver nanoclusters

Qi Chen ^a, Meng Li ^a, Fang Zhang ^a, Ru Li ^a, Guang Chen ^a, Shuyun Zhu ^{a,b*}, Hua

Wang^{a*}

^a Shandong Provincial Key Laboratory of Life-Organic Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China. E-mail: <u>shuyunzhu1981@163.com</u> (S. Zhu); <u>huawangqfnu@126.com</u> (H. Wang).

^b Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, Shandong, 273165, China.

Fig. S1 Stability investigation of GSH@AgNCs stored over the different time intervals at 4 °C.

Fig. S2 Fluorescence emission spectra of GSH@AgNCs and GSH@AgNCs in the

presence of 50 µM PA.

Fig. S3 Fluorescence emission spectra of GSH@AgNCs in the presence of different concentration of Fe^{3+} ions. From top to down, the concentration of Fe^{3+} is 0, 5, 10, 15, 20, 30, 40, 50 and 100 μ M, respectively.

Fig. S4 Effect of pH on the fluorescence intensity of GSH@AgNCs, GSH@AgNCs with 50 μ M Fe³⁺ ions, and GSH@AgNCs with 50 μ M Fe³⁺ ions and 50 μ M PA.

Fig. S5 The Effect of reaction time between Fe³⁺ ions and PA on the fluorescence

intensity.

Fig. S6 Fluorescence response of Fe³⁺-GSH@AgNCs system to PA in the presence of competitive substances. The concentration of PA and of all competitive substances was 20 μM. From 1 to 13 is only PA, Cl⁻, CO₃²⁻, SO₄²⁻, Mg²⁺, Cu²⁺, Ca²⁺, K⁺, Zn²⁺,

Al³⁺, EDTA, lysine, and threonine, respectively.