FLUOROGENIC AND CHROMOGENIC DUAL SENSOR FOR THE DETECTION OF CYANIDE AND COPPER (II) IN WATER SAMPLE AND LIVING CELLS

Thankarajan Mini Mablet Ebaston^a, Gopal Balamurugan ^a, Sivan Velmathi*^a

^a Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli-620 015, INDIA. Tel: 91-431-2503640; e-mail:

velmathis@nitt.edu

SUPPORTING INFORMATION

LIST OF FIGURES

Figure S1. FT-IR spectrum of sensor R

Figure S2. ¹H NMR spectrum of sensor R (300 MHz, CDCl₃)

Figure S3. ¹³C NMR (75 MHz, CDCl₃)

Figure S4. EI Mass spectrum of R (Mol. Wt = 278)

Figure S5. UV-vis spectrum of R (1 x 10^{-5} M, in CH₃CN) upon titration (0-2 eq.) with aqueous solution of CN⁻ ions (1.5 x 10^{-3} M, in H₂O).

Figure S6. Effect of pH towards the sensing behaviour of R (5 x 10^{-5} M, in HEPES Buffer using ACN: H₂O 3:7) upon addition of 2 eq. with CN⁻ ions (1.5 x 10^{-3} M, in H₂O).

Figure S7. Rate constant determination using Integrated Rate Laws.

Figure S8. Fluorescence spectrum of sensor R (1 x 10^{-5} M, in CH₃CN) upon titration (0 – 2 eq.) with aqueous solution of CN⁻ (1.5 x 10^{-3} M, in H₂O)

Figure S9. Detection limit plot: Intensity versus concentration of cyanide.

Figure S10. Job's plot for sensor R

Figure S1. FT-IR spectrum of sensor R 3041 (Ar-H), 2220 (C- N), 1597 (C=C), 1583 (C=C),

822 (Ar-H)

Figure S2. ¹H NMR spectrum of sensor R (300 MHz, CDCl₃) δ (ppm): 8.93 (s, 1H, a'), 8.85 (d, 1H, b), 8.39-8.13 (m, 8H, aromatic)

Figure S3. ¹³C NMR (75 MHz, CDCl₃) δ (ppm) of sensor R: 156.49 (C 1), 121.13 (CN carbon), 135.83, 131.22, 131.07, 130.83, 130.31, 127.84, 127.54, 127.37, 127.05, 125.89, 125.23, 124.65, 124.10, 123.81 (aromatic carbons)

Figure S5.UV-vis spectrum of R (1 x 10^{-5} M, in CH₃CN) upon titration (0-2 eq.) with aqueous solution of CN⁻ ions (1.5 x 10^{-3} M, in H₂O).

Figure S6. Effect of pH towards the sensing behaviour of R (5 x 10^{-5} M, in HEPES Buffer using ACN: H₂O 3:7) upon addition of 2 eq. with CN⁻ ions (1.5 x 10^{-3} M, in H₂O).

Figure S7. Rate constants determination using Integrated Rate Laws for Cyanide adduct formation (a) and Cu(II) complexation (b)

Figure S8. Fluorescence spectrum of sensor R ($1x10^{-5}$ M, in CH₃CN) upon titration (0 – 2 eq.) with aqueous solution of CN⁻ (1.5×10^{-3} M, in H₂O)

Figure S9. Detection limit plot: Intensity versus concentration of cyanide

Figure S10. Job's plot for sensor R with cyanide

