Versatile UHPLC-MSMS method for simultaneous quantification of various alcohol intake related compounds in human urine and blood

Rastislav Monošík and Lars Ove Dragsted

Department of Nutrition, Exercise and Sports, Faculty of Life Science, University of Copenhagen, Nørre Alle' 51, DK-2200 Copenhagen N, Denmark

Supporting Information: 2 Table S-1. Table overview of LC gradient. 2 Table S-2. Overview of mass spectrometry parameters of target compounds with related internal standards. 3 Figure S-1. Illustrative chromatograms of target compounds and related internal standards. 4-6 Table S-3. Coefficients of variation (%) of repeatability (n=6) and intermediate precision (n=9). 7 Figure S-2a. Illustrative chromatograms of isoxanthohumol and isocohumulone in 10× diluted pilsner beer 8 Figure S-2b. Illustrative chromatograms of 3-nitro-tyrosine in a standard solution (1 µg mL⁻¹) and pooled sample (n=80). 9 Figure S-2c. Illustrative chromatogram of indole-3-acetic acid in a standard solution. 9 Figure S-2d. Illustrative chromatograms of cortisol and cortisol sulphate in standard solution. 10

Time (min.)	Flow (mL min ⁻¹)	A:B	Curve
0	0.55	98:2	6
1	0.55	98:2	6
1.5	0.43	75:25	6
1.9	0.43	50:50	6
4.1	0.6	20:80	6
4.5	0.6	0:100	3
4.9	0.6	0:100	6
5.1	0.55	98:2	3
6	0.55	98:2	6

 Table S-1. Table overview of LC gradient.

Compound	RT	RT window	Primary transition (quantifier)	Secondary transition (qualifier)	Cone voltage	Collision E
L– (+)–tartaric acid	0.56	0-0.85	149.1→87.1	149.1→73	25	^a 10 / ^b 15
L– (+)–tartaric acid–d ₂	0.55	0-0.85	151.1→74	151.1→88.1	25	15
ethyl sulphate	0.80	0.65-1.15	125→97	125→80	25	20
ethyl sulphate–d ₅	0.79	0.65-1.15	130→98	130→80	25	20
ethyl-β-D-glucuronide	1.39	1–1.65	221.2→85.1	221.2→75.1	25	15
ethyl-β-D-glucuronide–d ₅	1.34	1–1.65	226.2→85.1	226.2→75.1	25	15
indoxyl sulphate	2.54	2.35-2.75	212→80	212→132	30	20
indoxyl sulphate-d ₄	2.53	2.35-2.75	216→80	216→136	30	20
<i>p</i> –cresol sulphate	2.68	2.65-3	186.7→107	186.7→80	30	20
<i>p</i> –cresol sulphate–d ₇	2.80	2.25-2.8	194.1→114.1	194.1→80	30	20
resveratrol	°3.04/ 3.26	2.85-3.55	227.1→143.2	227.1→185	30	^a 25 / ^b 20
resveratrol-13C ₆	°3.04/ 3.25	2.85-3.55	233.2→149.2	233.2→191.2	35	^a 25 / ^b 20
estrone 3–sulphate	3.75	3.6-4	349.2→269.4	349.2→80	35	30
estrone-d ₄ - 3-sulphate	3.76	3.6-4	353.2→273.4	353.2→80	35	30
DHEAS	4.12	3.9-4.45	367.2→97	_	30	30
DHEAS-d ₅	4.13	3.9-4.45	372.2→98	-	30	30

Table S–2. Overview of mass spectrometry parameters of target compounds with related internal standards (span = ± 0.2 ; dwell = 0.100 s).

RT – retention time; ^avalue for primary transition; ^bvalue for secondary transition; ^ccommercial resveratrol is a mixture of *cis*– and *trans*–resveratrol

	0.55																		2. MRW 012 Charmers E3- 149.1 > 87.1 (Tartaric acid) 3.82e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 2: MRM of 2 Channels ES- 149.1 > 73 (Tartaric acid) 3.13e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 3: MRM of 2 Channels ES- 125 > 97 (Ethyl sulfate) 2.17e5
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 3: MRM of 2 Channels ES- 125 > 80 (Ethyl sulfate) 8.62e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 1: MRM of 2 Channels ES- 151.1 > 88.1 (Tartaric acid-d2) 2.50e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 1: MRM of 2 Channels ES- 151.1 > 74 (Tartaric acid-d2) 3.36e4
40	0.60	0.80 0.79	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 4: MRM of 2 Channels ES- 130 > 98 (Ethyl sulfate-d5) 2.05e5
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 4: MRM of 2 Channels ES- 130 > 80 (Ethyl sulfate-d5 6.83e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00 226.2	4.20 4.40 5: MRM of 2 Channels ES- 2 > 85.1 (Ethyl glucuronide-d5) 2.63e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00 226.2	4.20 4.40 5: MRM of 2 Channels ES- 2 > 75.1 (Ethyl glucuronide-d5 2.86e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40

Figure S-1. Illustrative chromatograms of target compounds and related internal standards.

					1.39														6: MRM of 2 Channels ES- 221.2 > 85.1 (Ethyl glucuronide) 5.65e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 6: MRM of 2 Channels ES- 221.2 > 75.1 (Ethyl glucuronide) 5.70e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 7: MRM of 2 Channels ES- 216 > 136 (Indoxyl sulfate-d4) 9.45e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 7: MRM of 2 Channels ES- 216 > 80 (Indoxyl sulfate-d4) 1.33e5
40	0.60	0.80	1.00	1.20	<mark>1</mark> .40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 8: MRM of 2 Channels ES- 212 > 132 (Indoxyl sulfate) 1.43e6
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 8: MRM of 2 Channels ES- 212 > 80 (Indoxyl sulfate) 2.25e6
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00 1	4.20 4.40 9: MRM of 2 Channels ES- 94.1 > 114.1 (Cresol sulfate-d7) 4.22e5
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 9: MRM of 2 Channels ES- 194.1 > 80 (Cresol sulfate-d7) 6.57e4
40	0.60	0.80	1.00	1.20	<mark>1</mark> .40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 10: MRM of 2 Channels ES- 186.7 > 107 (Cresol sulfate) 2.81e5
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 10: MRM of 2 Channels ES- 186.7 > 80 (Cresol sulfate) 1.09e6
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40

Figure S-1. Illustrative chromatograms of target compounds and related internal standards.

													3.03	3.26					12: MRM of 2 Channels ES- 227.1 > 185.2 (Resveratrol) 6.28e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 12: MRM of 2 Channels ES- 227.1 > 143.2 (Resveratrol) 7.11e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00 23	4.20 4.40 13: MRM of 2 Channels ES- 33.2 > 191.2 (Resveratrol-13C6) 6.72e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00 23	4.20 4.40 13: MRM of 2 Channels ES- 33.2 > 149.2 (Resveratrol-13C6) 7.25e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00 35	4.20 4.40 15: MRM of 2 Channels ES- 3.2 > 273.4 (Estrone sulfate-d4) 8.45e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 15: MRM of 2 Channels ES- 53.2 > 80.2 (Estrone sulfate-d4) 1.90e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 16: MRM of 2 Channels ES- 349.2 > 269.4 (Estrone sulfate) 4.36e5
40 40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 16: MRM of 2 Channels ES- 349.2 > 80.2 (Estrone sulfate) 8.69e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 18: MRM of 1 Channel ES- 4.16 367.2 > 97 (DHEAS) 4.02e6
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40 19: MRM of 1 Channel ES- 4.14 372.2 > 98 (DHEAS-d5) 7.87e4
40	0.60	0.80	1.00	1.20	1.40	1.60	1.80	2.00	2.20	2.40	2.60	2.80	3.00	3.20	3.40	3.60	3.80	4.00	4.20 4.40

Figure S-1. Illustrative chromatograms of target compounds and related internal standards.

Analyte		Repeatability		Intermediate precision					
	Standard solution	Urine	Plasma	Standard solution	Urine	Plasma			
L-(+)-tartaric acid	1.7	1.4	2.0	3.5	2.0	3.3			
ethyl sulphate	8.7	1.7	11	12	8.2	26			
ethyl-β-D- glucuronide	3.3	1.6	2.1	3.9	3.2	2.5			
indoxyl sulphate	2.5	2.1	2.7	3.4	1.8	1.9			
<i>p</i> -cresol sulphate	4.2	2.1	3.8	4.5	2.3	19			
resveratrol	2.1	1.7	1.6	7.5	3.3	3.7			
estrone 3- sulphate	1.5	1.8	1.1	2.5	2.0	4.5			
DHEAS	0.51	0.97	1.1	0.90	1.3	1.7			

 Table S-3. Coefficients of variation (%) of repeatability (n=6) and intermediate precision (n=9).

Figure S–2a. Illustrative chromatograms of isoxanthohumol and isocohumulone in 10× diluted pilsner beer.

225.1 > 181.1 (3-nitro-tyrosine) 7.28e4
5.00 5.20 5.40 5.60 5.80 3: MRM of 2 Channels ES- 225.1 > 163.1 (3-nitro-tyrosine) 1.56e5
5.00 5.20 5.40 5.60 5.80
7: MRM of 2 Channels ES- 225.1 > 181.1 (3-nitro-tyrosine) 1.69e4
4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 7. MRM of 2 Channels ES- 225.1 > 163.1 (3-nitro-tyrosing) 1.05e3

Figure S-2b. Illustrative chromatograms of 3-nitro-tyrosine in a standard solution (1 µg mL⁻¹) and an unknown isomer in pooled sample (n=80).

Figure S–2c. Illustrative chromatogram of indole–3–acetic acid in a standard solution.

Figure S–2d. Illustrative chromatograms of cortisol and cortisol sulphate in standard solution.