Assessment of human paraoxonase activity by electrochemistry:

a simple and novel approach

Tiago Monteiro, Francisco Oliveira, Adérito Fins, Clara G. Dias, Célia M. Silveira, Sofia A. Pereira and M. Gabriela Almeida

Supplementary Information

Deduction of the paraoxonase reaction rate – Equation 2

a) The cathodic peak intensity (I_p) is directly proportional to paraoxon's concentration ([S]) according to $I_p = a \times [S]$, where *a* is the slope of the I_p vs [S] calibration curve (cf. Fig. 1b).

$$I_{p0} = a \times [S]_0 \Rightarrow a = \frac{I_{p0}}{[S]_0}.$$

When [S] = [S]₀ then

b) The rate equation for the paraoxonase reaction is written as $v_0 = \frac{\Delta[S]}{\Delta t}$, where [S] can be substituted by the correlation defined in a), accordingly:

$$v_{0} = \frac{[S]_{t} - [S]_{0}}{t - t_{0}} \Rightarrow v_{0} = \frac{\frac{I_{pt}}{a} - \frac{I_{p0}}{a}}{t - t_{0}} \Leftrightarrow v_{0} = \frac{1}{a} \times \frac{I_{pt} - I_{p0}}{t - t_{0}} \Rightarrow v_{0} = \frac{[S]_{0}}{I_{p0}} \times \frac{I_{pt} - I_{p0}}{t - t_{0}} \Leftrightarrow v_{0} = \frac{[S]_{0}}{I_{p0}} \times \frac{\Delta I_{p}}{\Delta t}$$

c) Taking into account the substrate's non-catalytic hydrolysis, the final equation is written as:

$$v_{0} = \left(\frac{[S]_{0}}{I_{p0}} \times \frac{\Delta I_{p}}{\Delta t}\right) - \left(\frac{[S]_{0}}{I_{p0}} \times \frac{\Delta I_{p}}{\Delta t}\right)_{without \ enzyme}$$

- a Slope of the I_p vs [S] curve (A M⁻¹)
- I_p Peak current intensity (A)
- [S] Substrate (paraoxon) concentration (M)

$$v_0$$
 – Reaction rate (M s⁻¹)