Supporting Information for:

A fully disposable paper-based electrophoresis microchip with integrated pencil-drawn electrodes for contactless conductivity detection

Cyro L. S. Chagas,^a Fabrício R. de Souza,^a Thiago M. G. Cardoso,^a Roger C. Moreira,^a José A. F. da

Silva,^b Dosil P. de Jesus^b and Wendell K. T. Coltro*^a

^aInstituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, Goiás, Brazil.

^bInstituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil.

Experimental

1. Chemicals

All chemicals were used without further purification, in analytical grade, and purchased from Sigma-Aldrich, St. Louis, Missouri, USA. The artificial serum was purchased from Doles Reagents (Goiânia, GO, Brazil).

2. Instrumentation for Electrophoresis and Contactless Conductivity Detection

For the experiments with paper-based microchip, it was used a bipolar two-channel high voltage sequencer from eDAQ (model ER230, Denistone East, NSW, Australia) and a labmade system developed based on the electronics described by da Silva and co-workers.¹ A function generator (model GV-2002, ICEL, Manaus, Brazil) was used to apply the high-frequency sinusoidal wave. The measured current was converted to voltage, rectified, filtered, amplified, and monitored using an A/D interface (model NI USB-6009) from National Instruments. The data acquisition was performed with 1ms of resolution by using a software written in LabVIEWTM v. 2010.

Experiments of zone electrophoresis on glass microchips were performed using a Quad HV microchip electrophoresis system (model ER455) supplied by eDAQ (Denistone East, NSW, Australia). The system comprises two high-voltage sequencers model ER230 and a C⁴D model ER225. This system is coupled with microfluidic platform model ET-225 (Micronit Microfluids Enschede, Netherlands). Electrophoretic separations were performed using commercial glass microchips model ET190 with integrated sensing electrodes from Micronit Microfluids (Enschede, Netherlands). Glass microchips comprise two channels (100 μ m width \times 10 μ m depth) arranged in double-T geometry with gap of 100 μ m and the electrophoresis chip consisted of a 40 mm long separation channel, 0.7 cm long side arms and effective length equal to 33 mm. Two parallel electrodes measuring 200 μ m wide \times 500 μ m long \times 200 nm thick spaced by 250 μ m were used for C⁴D

measurements. PowerChrom software (version 2.7.9) was used for the acquisition, display, and analysis of electropherograms. All the sequences of high voltages were controlled using either the eDAQ Sequencer software (version 1.3.3).

3. Results

3.1 Ohm plot

Figure S1. Plot of current versus voltage for paper-based microchannels filled with running buffer composed of MES/His (20 mM, each), pH 6.1.

3.2. Evaluation of different electrode arrangements and injection-to-injection repeatability

Figure S2. Electropherograms showing five consecutive injections of a standard solution containing 500 μ mol L⁻¹ Na⁺ for electrode cell attached on (a) top, (b) bottom, and (c) top-bottom sides.

Table S1. Comparison of the analytical performance for the different electrodes arrangements (n = 5).

Electrode Arrangement	Intensity (V)	Area (V.s)	Migration Time (s)	Efficiency (N.m ⁻¹)	Asymmetry
Тор	0.48 ± 0.06	9.89 ± 1.24	134.2 ± 1.6	3959 ± 167	0.52 ± 0.04
Bottom	0.62 ± 0.03	16.64 ± 1.05	153.6 ± 2.1	9161 ± 419	0.30 ± 0.02
Top-Bottom	0.52 ± 0.04	17.93 ± 1.80	167.8 ± 1.0	3871 ± 300	0.25 ± 0.02

Figure S3. Electropherograms of ten consecutive injections for a Na⁺ standard solution (250 μ mol L⁻¹).

3.3. Analytical Curves

Figure S4. Calibration curves for (a) BSA and (b) creatinine on paper-based electrophoresis microchips.

3.4. Detection of BSA and creatinine in artificial serum samples

Figure S5. Electropherograms showing five analysis of (a) BSA and (b) creatinine in artificial serum sample using paper-based electrophoresis microchips.

Table S2. Chemical composition of artificial serum sample.

Analyte	Average Concentration	
Uric Acid	4.08 mg/dL	
Albumin	2.06 g/dL	
Alanine aminotransferase / Glutamic-pyruvate transaminase	55 IU/L	
Amylase	234 U/dL	
Aspartate aminotransferase/Glutamic-oxaloacetic	63 IU/L	
transaminase		
Billirubin	0.79 mg/dL	
Calcium	8.96 mg/dL	
Total Iron Binding Capacity	228 μg/dL	
Chloride	91 mmol/L	
Total Cholesterol	125 mg/dL	
HDL Cholesterol	64 mg/dL	
LDL Cholesterol	39 mg/dL	
Creatinine	1.04 mg/dL	
Lactate dehydrogenase	260 IU/L	
Iron	84 μg/dL	
Alkaline Phosphatase	144 U/L	
Phosphate	3.71 mg/dL	
γ-glutamiltranspeptidase	56 IU/L	
Glucose	90 mg/dL	
Magnesium	1.62 mg/dL	
Potassium	3.46 mmol/L	
Total protein	3.69 g/dL	
Triglycerides	89 mg/dL	
Urea	33 mg/dL	

3.5. Detection of BSA and creatinine on commercial glass electrophoresis chips

Figure S6. Electropherograms showing the individual analysis of (a) BSA and (b) creatinine solutions as well as a mixture of both analytes on commercial glass electrophoresis devices.

4. References

⁽¹⁾ da Silva, J. A. F.; Guzman, N.; do Lago, C. L. J. Chromatogr. A 2002, 942, 249-258.