Supporting information

A very fast 3-hydroxy-coumarin-based fluorescent probe for highly selective and sensitive detection of thiophenols and its application in water samples

Xiao-Bo Wang,ª Jianhua Zhou,ª Datong Zhang,ª* Bin Wang^b

^aShandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, P. R. China ^b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, P. R. China

Table of contents

Table S1	S-2
Synthesis of Intermediates M1 and M2	S-3
Screening of Detection Media	S-5
Figure S1	S-5
Determination of Quantum Yields	S-5
Determination of the Detection Limits	S-5
Measurements of Thiophenols in Water Samples	S-6
Quantum Chemical Calculation	S-6
Copies of NMR and Mass Spectra	S-7
References	S-12

Probes	Time needed to	Detection	Detection	LOD ^b	Application in	ref
	reach FI plateau ^a	time	media		real water	
					samples	
	40 min (5 equiv.)	30 min	Aqueous phosphate buffer (pH 7.0) containing 45% DMF	1.8 nM	Yes	1
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	15 min (2 equiv.)	20 min	Aqueous phosphate buffer (pH 8.0)	20 nM	Yes	2
NC+CN O2N NO2 NO2 NO2	6 min (10 equiv.)	10 min	Aqueous phosphate buffer (pH 7.4) containing 30% DMSO	70 nM	Yes	3
	1.5 min (10 equiv.)	5 min	Aqueous HEPES buffer (pH 7.4)	6.9 nM	No	4
	1 min (10 equiv.)	2 min	Aqueous HEPES buffer (pH 7.4)	224 nM	Yes	5
	30 min (4 equiv.)	60 min	Aqueous phosphate buffer (pH 7.4)	30 nM	Yes	6
HN HN P P F F C C	90 min (20 equiv.)	60 min	Aqueous phosphate buffer (pH 7.4) containing 50% CH ₃ CN	37 nM	No	7

Table S1 Comparison of Fluorescent Probes for Thiophenols Detection

No						
	20 min (1 equiv.)	30 min	Aqueous phosphate buffer (pH 7.4) containing 50% EtOH	4.9 nM	Yes	8
	300 s (3 equiv.)	5 min	Aqueous phosphate buffer (pH 7.4) containing 40% DMF	120 nM	Yes	9
но Дон и ал од До и Ал од До К No Дон и ал од До и Ал од До К он	Instant (50 equiv.)	Instant	Aqueous HCI-Tris buffer(pH 7.3)	3.8 nM	Yes	10
o ₂ N-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C	60 min (5 equiv.)	60 min	Aqueous HEPES buffer (pH 7.4) containing 20% CH ₃ CN	3.5 nM	Yes	11
PNS CH CH CH	150 s (0.5 equiv.)	2 min	Aqueous phosphate buffer (pH 7.4) containing 50% CH ₃ CN	189 nM	Yes	12
($)$ $)$ $)$ $()$ $($	40 min (4 equiv.)	>40min	Aqueous phosphate buffer (pH 7.4)	4.5 nM	Yes	13
	100 s (30 equiv.)	c	Aqueous HEPES buffer (pH 7.4) containing 50% DMSO	13 nM	No	14

	120 s (5 equiv.)	30 min	Aqueous HEPES buffer (pH 7.4)	8.2 nM	Yes	15
No Chen	C	15 min	Aqueous phosphate buffer (pH 7.4) containing 60% DMF	9.6 nM	Yes	16
	C	15 min	Aqueous phosphate buffer (pH 7.2) containing 45% DMF	30 nM	Yes	17
O ₂ N, CT NO ₂ O ² CT N O ² CT N	Instant (any equiv.)	Instant	Aqueous HEPES buffer (pH 7.4) containing 50% THF	24 nM	Yes	18 (From our group)
	² Instant (any equiv.)	Instant	Aqueous HEPES buffer (pH 7.4) containing 30% THF	7.3 nM	Yes	This work

^a Values in the brackets are the amounts of PhSH relative to probe.

^b Abbreviation of Limit of detection.

^c Not mentioned.

Synthesis of Intermediates M1 and M2

7-Diethylamino-3-nitro-chromene-2-one (M1). 4-Diethylaminosalicylaldehyde (1.40 g, 7.21 mmol), ethyl nitroacetate (0.96 g, 7.21 mmol), 0.1 mL of piperidine, and 0.2 mL of glacial acetic acid were dissolved in 20 mL of anhydrous *n*-BuOH, and the reaction mixture was refluxed for 24 hours. Orange solids were formed during cooling. The crude product was recrystallized from 3 mL of DMF and an orange solid M1 (1.14 g) was obtained. Yield: 60.1%. ¹H NMR (400 MHz, CDCl₃): δ 8.72 (s, 1H), 7.45 (d, *J* = 9.2 Hz, 1H), 6.72 (d, *J* = 9.2 Hz, 1H), 6.49 (s, 1H), 3.51(q, *J* = 6.8 Hz, 4H), 1.28 (t, *J* = 6.8 Hz, 6H).

3-Amino-7-diethylamino-chromene-2-one (M2). SnCl₂·2H₂O (1.55 g, 6.87 mmol) and 6 mL of 37% HCl were added into a 100 mL round-bottomed flask. Next, compound M1 (0.60 g, 2.29 mmol) was added

portion-wise, and the resultant solution was further stirred at room temperature for 4 hours. Then, a solution of 5 M NaOH was employed to neutralize the excessive acid, followed by extraction with ethyl acetate. The organic layer was dried with anhydrous Na₂SO₄ and evaporated to dryness. The product was obtained as a bright yellow solid (0.51 g). Yield: 95%. ¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, *J* = 8.4 Hz, 1H), 6.71 (s, 1H), 6.58 (d, *J* = 6.8 Hz, 1H), 6.54 (s, 1H), 3.88 (s, 2H), 3.37 (q, *J* = 7.2 Hz, 4H), 1.18 (t, *J* = 6.8 Hz, 6H).

Screening of Detection Media. To select the appropriate solvent system, we carried out the preliminary screening studies. The reaction between probe **1** and thiophenols can finish instantly in aqueous HEPES buffer (pH 7.4) containing 30% THF, which brings great convenience for the test. The reaction becomes slower when the proportion of the THF is less than 30%. The probe shows poor selectivity between thiophenols and biothiols when the proportion of the THF is higher than 30%. Thus we chose HEPES buffer (10 mM, pH 7.4) containing 30% THF as a co-solvent as the detection media.

Figure S1 Absorption spectra of probe **1** before and after addition of PhSH in HEPES buffer (10 mM, pH 7.4) containing 30% THF as a co-solvent.

Determination of Quantum Yields. Quantum yields were determined using Quinine sulfate as a standard according to a published method. ¹⁸⁻¹⁹ The quantum yield was calculated according to the equation:

Where Φ is the quantum yield, $\Phi_{standard} = 0.546$ in 0.1 M H₂SO₄, F_{sample} and F_{standard} are the integrated fluorescence intensities of the sample and the standard, A_{sample} and A_{standard} are the optical densities, at the excitation wavelength, of the sample and the standard, respectively.

Quantum yield of Probe **1**: ϕ = 0.0184.

Quantum yield of M3: ϕ = 0.285.

Determination of the Detection Limits. The detection limit was determined from the fluorescence titration data based on a reported method. ²⁰⁻²³ According to the result of titrating experiment, the fluorescence intensity data at 493 nm were normalized between the minimum

intensity and the maximum intensity. As shown in Figure S2, a linear regression curve was then fitted to these normalized fluorescence intensity data, and the point at which this line crossed the abscissa axis was considered as the detection limit (7.3 nM).

Figure S2 Normalized response of the fluorescence signal to changing PhSH concentrations (10, 15, 18, 20, 25, 30, 40, 50 nM)

Measurements of Thiophenols in Water Samples. The crude water samples from the Schoolyard River and Yuanboyuan Lake were passed through a microfiltration membrane before use. 10 mL aliquots of the water samples were then spiked with different concentrations of PhSH (0.5, 1, 5, 10, 30, 50, 100 μ M) that had been accurately prepared. 1 mL sample was taken from each aliquot and further treated with probe **1** in THF-HEPES buffer (pH = 7.4, 10 mM, 3:6, v/v) to give the final mixtures (10 mL) containing probe **1** (final concentration = 10 μ M) and PhSH (final concentration = 0.05, 0.1, 0.5, 1, 3, 5, 10 μ M). The fluorescence at 493 nm of the mixed solutions was then measured at 1 min after the addition. The results were reported as the mean ± standard deviation of triplicate experiments.

Quantum chemical calculation. Quantum chemical calculations based on density functional theory (DFT) were carried out using a Gaussian 09 program. The optimized geometries and energy levels of frontier molecular orbitals were performed using the B3LYP functional and the 6-31 g (d, p) basis set.

Copies of NMR and Mass Spectra

Figure S4 ¹H NMR spectrum of M2 in CDCl₃

Figure S7 ¹³C NMR spectrum of M3 in CDCl₃

Figure S8¹³C NMR spectrum of probe 1 in CDCl₃

Figure S9 HRMS spectra of M3

Figure S10 HRMS spectra of probe 1

Figure S11¹H NMR spectrum of compound 2 in CDCl₃

Figure S12 ¹³C NMR spectrum of compound 2 in CDCl₃

References

- 1. W. Lin, L. Long, W. Tan. Chemical Communications, 2010, 46, 1503-1505.
- 2. Z. Wang, D. M. Han, W. P. Jia, et al. Analytical chemistry, 2012, 84, 4915-4920.
- 3. D. Yu, F. Huang, S. Ding, et al. Analytical chemistry, 2014, 86, 8835-8841.
- 4. D. Kand, P. S. Mandal, A. Datar, et al. Dyes and Pigments, 2014, 106, 25-31.
- 5. D. Kand, P. S. Mandal, T. Saha, et al. *Rsc Advances*, 2014, 4, 59579-59586.
- 6. J. Li, C. F. Zhang, S. H. Yang, et al. *Analytical chemistry*, 2014, **86**, 3037-3042.
- 7. X. Shao, R. Kang, Y. Zhang, et al. Analytical chemistry, 2014, 87, 399-405.
- 8. H. W. Liu, X. B. Zhang, J. Zhang, et al. Analytical chemistry, 2015, 87, 8896-8903.
- 9. Q. Zhai, S, Yang, Y, Fang, et al. RSC Advances, 2015, 5, 94216-94221.
- 10. K. B. Li, D. Zhou, X. P. He, et al. Dyes and Pigments, 2015, 116, 52-57.
- 11. X. Liu, L. Yang, L. Gao, et al. Tetrahedron, 2015, 71, 8285-8289.
- 12. X. Hu, W. Su, Q. Zhou, et al. *Analytical Methods*, 2016, **8**, 1425-1430.
- 13. Q. Sun, S. H. Yang, L. Wu, et al. Analytical chemistry, 2016, 88, 2266-2272.
- 14. W. Zhang, F. Huo, T. Liu, et al. Dyes and Pigments, 2016, DOI: 10.1016/j.dyepig.2016.06.009.
- 15. X. Liu, F. Qi, Y. Su, et al. Journal of Materials Chemistry C, 2016, 4, 4320-4326.
- 16. Q. Ma, J. Xu, X. Zhang, et al. Sensors and Actuators B: Chemical, 2016, 229, 434-440.
- 17. D. G. Khandare, M. Banerjee, R. Gupta, et al. *RSC Advances*, 2016, **6**, 52790-52797.
- 18. R. An, P. Wei, D. Zhang, N. Su. Tetrahedron Letters, 2016, 57, 3039-3042.
- 19. R. A. Velapoldi, H. H. Tønnesen, J. Fluoresc. 2004, 14, 465-472.
- 20. Z. Zhou, N. Li, A. Tong, Anal. Chem. 2014, 86, 3037-3042.
- 21. A. Caballero, R. Martínez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, J. Veciana, J. Am. Chem. Soc. 2005, 127, 15666-15667.
- 22. W. Lin, L. Yuan, L. Long, C. Guo, J. Feng, Adv. Funct. Mate. 2008, 18, 2366-2372.
- 23. K. Zheng, W. Lin, D. Cheng, H. Chen, Y. Liu, K. Liu, Chem. Commun. 2015, 51, 5754-5757.
- 24. M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, Anal. Chem. 1996, 68, 1414-1418.