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Theory

The PARAFAC model

In the PARAFAC model, the second–order data for the Ical training matrices, each of them 

as a JK matrix Xi,cal (J and K are the number of data points in each dimension), are joined 

with the unknown sample matrix Xu into a three–way data array X, whose dimensions are 

[(Ical + 1)JK]. If the array X is trilinear, each responsive component can be explained in 

terms of three vectors an, bn and cn, which collect the relative concentrations [(Ical + 1)1] for 

component n, and the profiles in both modes (J1) and (K1) respectively. The PARAFAC 

model1 can be defined as: 

Xijk =  +Eijk     (1)


N

n
knjnin cba

1

in which N is the total number of responsive components, ain is the relative concentration of 

component n in the ith sample, and bjn and ckn are the intensities at the j and k variables, 

respectively. The values of Eijk are the elements of the matrix array E, which contains the 

variation not captured by the model. The column vectors an, bn and cn are collected into the 

corresponding score matrix A and loading matrices B and C.

The decomposition of X by Eq. (1), usually accomplished through an alternating least–

squares minimization scheme,2,3 retrieves the profiles in both data dimensions (B and C) and 

relative concentrations (A) of individual components in the (Ical + 1) mixtures, whether they 

are chemically known or not, constituting the basis of the second–order advantage. 

Some relevant issues concerning the application of PARAFAC model to the calibration of 

three–way data have to be considered: 

Initialization of the algorithm: Different strategies to manage this step include the use of 

vectors given by GRAM (generalized rank annihilation method),4 known spectral profiles of 
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pure components, or loadings giving the best fit after a small number of PARAFAC runs with 

a few iterations. These alternatives can be found in Bro's PARAFAC package.5

Determination of the number of responsive components: Several methods can be applied to 

estimate the number of responsive components (N). CORCONDIA, a useful diagnostic tool 

which considers the PARAFAC internal parameter known as core consistency,6 involves the 

study of the structural model based on the data and the estimated parameters of gradually 

augmented models. If the addition of more components does not considerably improve the fit, 

the model could be considered as suitable, and the core consistency parameter significantly 

drops from a value of ca. 50. The evaluation of the PARAFAC residual error, i.e. the standard 

deviation of the elements of the array E in Eq. (1), which decreases with increasing N until it 

stabilizes at a value compatible with the instrumental noise, can be considered as another 

useful technique. N can be established as the smallest number of components for which the 

residual error is not statistically different than the instrumental noise. 

Restriction of the least–squares fit: With the aim of obtaining physically interpretable 

profiles, the alternating least–squares PARAFAC fitting can be constrained by several 

available restrictions. For instance, non–negativity restrictions in all three modes allow the fit 

to converge to the minimum with physical meaning from the several minima which may exist 

for linearly dependent systems.

Identification of specific components: The estimated profiles retrieved by the model have to 

be compared with those for standard solutions of the analytes of interest in order to identify 

the chemical components under investigation, since the order in which they are sorted can be 

different between samples, i.e. it depends on their contribution to the overall spectral 

variance. 

Calibration of the model to obtain absolute concentrations in unknown samples: Due to the 

fact that the three–way array decomposition provides relative values (A), absolute analyte 
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concentrations can only be obtained after calibration. Calibration is carried out by regression 

of the set of standards with known analyte concentrations (contained in an Ical1 vector y), 

and regression of the first Ical elements of column an against y (provided they correspond to 

the Ical samples): 

k = y+  [a1,n | ... | aIcal,n ]                      (2)

in which '+' implies taking the pseudo–inverse. Then, for each test sample, the unknown 

relative concentration of n has to be converted to absolute by division of the last element of 

column an [a(Ical+1)n] by the slope of the calibration graph k:

yu = a(Ical+1)n / k                 (3)

The U–PLS/RBL model

In U–PLS, the second–order data are unfolded into vectors before PLS is applied.7 The 

information of concentration is employed in the calibration step in order to obtain a set of 

loadings P and weight loadings W (both of size JKA, where J is the number of data points in 

the first data dimension, K is the number of data points in the second data dimension and A is 

the number of latent factors), as well as regression coefficients v (size A1). They are 

estimated from Ical calibration data matrices Xc,i, which are first vectorized into JK1 vectors, 

and calibration concentrations y (size Ical1). 

The optimum number of latent variables (A) to model the calibration set is usually selected 

by leave–one–out cross–validation.8 This implies calculating the ratios F(A) = 

PRESS(AA*)/PRESS(A), where PRESS = (ci,act – ci,pred)2, A is a trial number of factors, A* 

corresponds to the minimum PRESS, and ci,act and ci,pred are the actual and predicted 

concentrations for the ith sample left out from the calibration during cross–validation, 

respectively. The number of factors leading to a probability of less than 75 % that F1 is 

selected.
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In the absence of interferences in the test sample, v could be employed to estimate the 

analyte concentration:

yu = tu
T v                (4)

in which tu is the test sample score, obtained by projection of the unfolded data for the test 

sample vec(Xu) onto the space of the A latent factors:

tu = (WT P)–1 WT vec(Xu)                (5)

where vec(·) is the unfolding operator.

When unexpected interferences occur in Xu, then the sample scores given by Eq. (5) are 

not suitable for analyte prediction using Eq. (4). In this case, the residuals of the U–PLS 

prediction step [sp, see Eq. (6)] will be abnormally large in comparison with the typical 

instrumental noise:

sp = || ep || / (JK–A)1/2 = || vec(Xu) – P (WT P)–1 WT vec(Xu) || / (JK–A)1/2 =

    = || vec(Xu) – P tu || / (JK–A)1/2                 (6)

in which || · || indicates the Euclidean norm.

Therefore, a separate procedure called residual bilinearization can be implemented. This 

procedure is based on principal component analysis (PCA) to model the unexpected effects9,10 

and is usually carried out by singular value decomposition (SVD). RBL aims at minimizing 

the norm of the residual vector eu, computed while fitting the sample data to the sum of the 

relevant contributions: 

vec(Xu) = P tu + vec[Bunx Gunx (Cunx)T] + eu                (7)

in which Bunx and Cunx are matrices containing the first left and right eigenvectors of Ep, and 

Gunx is a diagonal matrix containing its singular values, as obtained from SVD analysis:

Bunx Gunx (Cunx)T = SVD(Ep)                (8)

in which Ep is the JK matrix obtained after reshaping the JK1 ep vector of Eq. (6) and SVD 

indicates taking the first principal components.
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During this procedure, P is kept constant at the calibration values, and tu is varied until 

|| eu || is minimized in Eq. (7) using a Gauss–Newton procedure. Then, the analyte 

concentrations are provided by Eq. (4), by introducing the final tu vector found by the RBL 

procedure. 

It should be noticed that for a number of interferences larger than one, the profiles 

provided by the SVD analysis of Ep no longer resemble the true interferent profiles, due to 

the fact that the principal components are restricted to be orthonormal. 

The aim which guides the RBL procedure is the minimization of the residual error su to a 

level compatible with the noise present in the measured signals,11 with su given by:

su = || eu || / [(J – NRBL)(K – NRBL) – A]1/2                (9)

in which NRBL is the number of RBL components and A the number of calibration PLS 

factors.
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Table S1 Central composite design and the obtained response values
Run b1–T/ºC b2–IT/min b3–LD/cm PIF/a.u.
1 15.0 10.0 6.0 8.99
2 15.0 10.0 6.0 9.25
3 25.0 15.0 3.0 8.41
4 15.0 10.0 3.0 9.01
5 15.0 10.0 6.0 8.94
6 15.0 3.0 6.0 6.38
7 15.0 10.0 6.0 8.95
8 5.0 5.0 3.0 8.87
9 15.0 10.0 6.0 8.72
10 5.0 15.0 9.0 10.02
11 25.0 5.0 9.0 4.08
12 5.0 10.0 6.0 10.13
13 15.0 15.0 6.0 7.86
14 15.0 10.0 9.0 6.74
15 25.0 10.0 6.0 8.26
  T: temperature; IT: irradiation time; LD: distance between the lamps.
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Table S2 Calibration concentrations provided by a semi–factorial design

Sample
Isoproturon
(ng mL–1)

Linuron
(ng mL–1)

Monuron
(ng mL–1)

Rimsulfuron
(ng mL–1)

1 200.0 30.0 30.0 100.0
2 115.0 115.0 115.0 60.0
3 30.0 200.0 30.0 100.0
4 30.0 30.0 30.0 20.0
5 30.0 30.0 200.0 100.0
6 115.0 115.0 115.0 60.0
7 30.0 200.0 200.0 20.0
8 200.0 30.0 200.0 20.0
9 200.0 200.0 200.0 100.0
10 200.0 200.0 30.0 20.0
11 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0
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Table S3 Composition of the mixtures added in the standard addition method applied 
to soil samples

Isoproturon
(ng mL–1)

Linuron
(ng mL–1)

Monuron
(ng mL–1)

Rimsulfuron
(ng mL–1)

#1 40.0 30.0 115.0 20.0
#2 80.0 60.0 200.0 60.0
#3 120.0 90.0 50.0 40.0
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Table S4 Analysis of variance (ANOVA) for the selected quadratic model
Source Sum of squares DF Mean square F value p > F
Model 33.25 9 3.69 172.40 < 0.0001
b1–T 2.00 1 2.00 93.20 0.0002
b2–IT 2.32 1 2.32 108.20 0.0001
b3–LD 0.61 1 0.61 28.56 0.0031
b11 0.19 1 0.19 8.83 0.00311
b22 6.02 1 6.02 281.10 <0.0001
b33 0.67 1 0.67 31.18 0.0025
b12 0.08 1 0.08 3.49 0.1205
b13 0.56 1 0.56 26.05 0.0038
b23 0.39 1 0.39 18.41 0.0078
Lack of Fit 0.2220
 DF = degree of freedom; p = probability; R2 (coefficient of determination) = 0.997; Pred R2 
(measures how well the model will predict the responses for a new experiment) = 0.810; 
Adeq precision (measures the signal to noise ratio) = 50.86.
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Table S5 Analytical parameters of the univariate calibration curves for each analyte in water 
solution and in the presence of the soil backgrounda

In water In soil
Isoproturon
Slope 358(9) 306(8)
Intercept 17(1) 48(4)
r2 0985 0.988
Linuron
Slope 262(7) 203(6)
Intercept 14.2(5) 42(7)
r2 0.998 0.991
Monuron
Slope 206(9) 188(5)
Intercept 9.9(5) 38(5)
r2 0.994 0.996
Rimsulfuron
Slope 802(8) 688(7)
Intercept 7(4) 34(2)
r2 0.998 0.995
aThe number of data for each calibration curve corresponds to five different concentration 
levels. The corresponding standard deviations in the last significant figure are given between 
parentheses.
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Fig. S1. Profiles retrieved when PARAFAC was applied with non–negativity restrictions, 

initialized with the best results of a set of a small number of runs, on a typical validation 

sample containing the four studied herbicides. (A) Excitation profiles. (B) Emission profiles. 
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