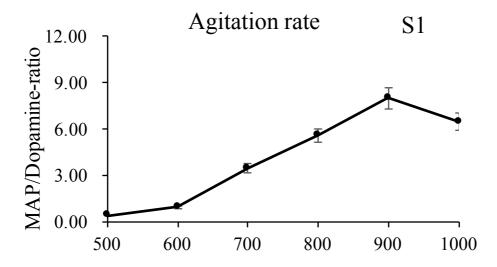
Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2016

## **Electronic Supplementary Information**

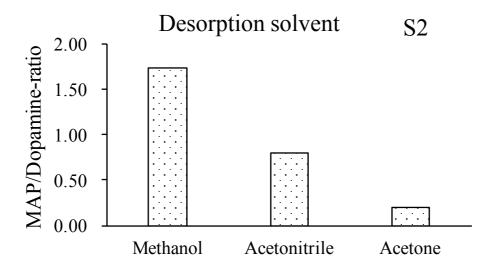
Hollow fiber-based solid-liquid phase microextraction combined with theta capillary electrospray ionization mass spectrometry for sensitive and accurate analysis of methamphetamine

Zhi Li <sup>1, 2\*</sup>, Shuaihua Zhang <sup>2</sup>, Yi Cai <sup>1</sup>, Qiuhua Wu <sup>1,2</sup>, Chen Hao <sup>1,\*</sup>

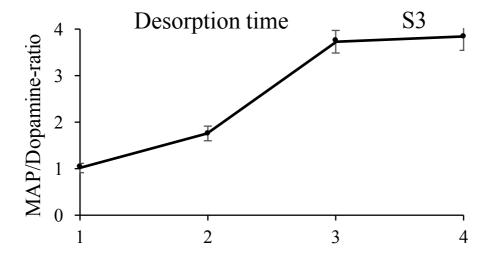
<sup>1</sup> Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA


<sup>2</sup> Department of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China

\* Corresponding author: Zhi Li and Chen Hao


Phone: +740-593-0719 (Chen Hao)

Fax: +740-597-3157 (Chen Hao)


E-mail: chenh2@ohio.edu (H. Chen), ihzil2006@126.com (Z. Li).



**Fig. S1** Effect of the stirring speed. The conditions were: the MAP concentration was  $1.0 \,\mu g \, mL^{-1}$ , the concentration of MOF/GO in toluene was  $3 \, mg \, mL^{-1}$ , the extraction time was  $30 \, min$ , no salt was added, pH was not adjusted, the desorption solvent was methanol with the volume of  $50 \,\mu L$ , the desorption time was  $3 \, min$ .



**Fig. S2** Effect of the desorption solvent. The conditions were: the MAP concentration was 20.0 ng mL<sup>-1</sup>, the concentration of MOF/GO in 1-octanol was 3 mg mL<sup>-1</sup>, the stirring rate was 900 rpm, pH value was 11, 30% (w/v) salt was added and the desorption time of 2 min.



**Fig. S3** Effect of the desorption time (min). The conditions were: the MAP concentration was 20.0 ng mL<sup>-1</sup>, the concentration of MOF/GO in 1-octanol was 3 mg mL<sup>-1</sup>, the stirring rate was 900 rpm, pH value was 11, 30% (w/v) salt was added and the desorption solvent was methanol.

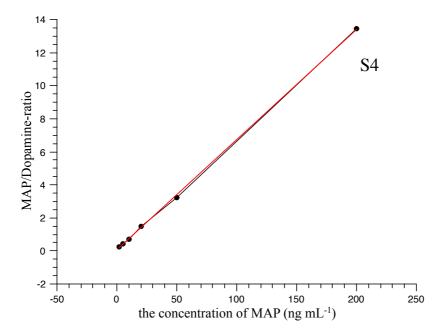



Fig. S4 Linear relation of the intensity ratios of the signal intensities of MAP to dopamine  $(1.0 \,\mu g \,mL^{-1})$ .