Supporting Information

The selective detection of galactose based on boronic acid functionalized fluorescent carbon dots

Jingai Yang^a, Xiwen He^a, Langxing Chen^{a, b,*}, Yukui Zhang^{a,c}

^aResearch Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of

Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology,

Nankai University, Tianjin 300071, China. Email: lxchen@nankai.edu.cn

^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China.

^cDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

1. The constitutional formula of monosaccharide

monosaccharide	Constitutional formula
D-galactose	
D-fructose	
D-glucose	
D-mannose	HO HO HO HO

Fig. S1 The constitutional formula of D-galactose, fructose, glucose and mannose ^[1, 2]. The cis-diol units of monosaccharide were marked with red font.

2. Detection limit of APBA-Cdots for galactose based on extrapolation method

Dividing 0.01263 by 2.03548 to get x-intercept which representative detection limit and the value is 6.2 μ M^[3].

Fig. S2 Detection limit of APBA-Cdots (extrapolation). I_0 and I are fluorescence intensities of the APBA-Cdots in the absence and presence of galactose, respectively. I_{min} represents the fluorescence intensity with 0.5 mM galactose.

References

- [1] Z.B. Qu, X. Zhou, L. Gu, R. Lan, D. Sun, D. Yu, G. Shi, Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate, Chem. Commun. 49(2013) 9830-9832.
- [2] Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J.Z. Sun, B.Z. Tang, Specific detection of Dglucose by a tetraphenylethene-based fluorescent sensor, J. Am. Chem. Soc. 133(2011) 660-663.

[3] M. Shortreed, R. Kopelman, M. Kuhn, B. Hoyland, Fluorescent Fiber-Optic Calcium Sensor for Physiological Measurements, Anal. Chem. 68(1996) 1414-1418.