Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A new turn-on fluorescent probe towards hypochlorite in living cells

Jing Guo,^a Zhixiang Zhang,^c Ziyu Kuai,^b Rui Wang,^a Qingbiao Yang,^{*a} Yaming Shan^{*b} and Yaoxian Li^a

° College of Chemistry, Jilin University, Changchun 130021, P. R. China. Fax: +86-431-88499576; Tel: +86-431-88499576

E-mail: yangqb@jlu.edu.cn

^b National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun 130021, P. R. China. Fax: +86-431-85167790; Tel: +86-431-85167790

E-mail: shanym@jlu.edu.cn

^c Institute of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China.

Table of contents

	page
Preparation of ROS/RNS	3
Figure S1	4
Figure S2	5
Figure S3	5
Figure S4	5
Figure S5	6
Figure S6	6
Figure S7	7
Figure S8	7
Figure S9	8
Figure S10	8
Figure S11	8
Table 1	9

Preparation of ROS/RNS

Preparation of H₂O₂

The stock H_2O_2 solution was purchased form J&K Chemical Co. (30 wt %). The concentration of H_2O_2 was measured by iodometric titration.

Preparation of •OH

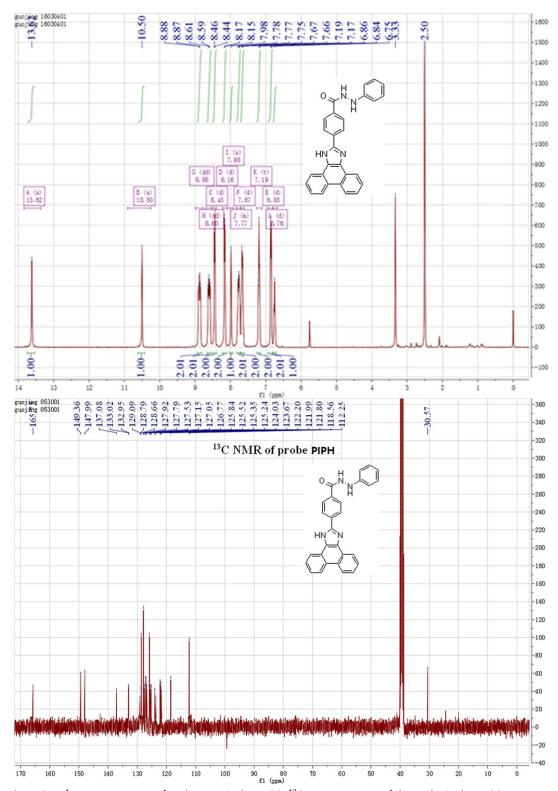
Hydroxyl radical was generated by Fenton reaction¹. To prepare \bullet OH solution, ferrous chloride was added in the presence of 10 equiv. of H_2O_2 .

Preparation of ¹O₂

Singlet oxygen was generated from the $\rm H_2O_2/MoO_4^{2-}$ system in alkaline media².

Preparation of t-BuOO•

t-BuOO· was generated from TBHP. The concentration of TBHP was determined by the titration of $S_2O_3^{2-}$. Preparation of $O_2^{\bullet-}$


Superoxide radical was generated from potassium superoxide, the radical could stably existed in 18-crown-6 ether and Me_2SO solutions³.

Preparation of NO

Nitric oxide was generated from SNP (Sodium Nitroferricyanide (III) Dihydrate)⁴.

Preparation of HOCI

The stock NaClO solution was purchased form J&K Chemical Co. (10 wt% Calculated as free chlorine). The concentration of OCl⁻ was measured by the iodometric titration.

 $\textbf{Figure S1} \quad ^{1}\text{H NMR spectrum of probe PIPH in d}_{6}\text{-DMSO; } ^{13}\text{C NMR spectrum of the probe in d}_{6}\text{-DMSO.}$

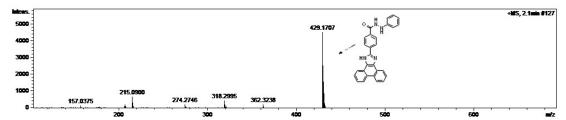


Figure S2 High-resolution mass spectra of PIPH.

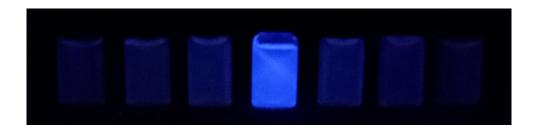


Figure S3 Fluorescence intensity of the PIPH (5 μ M) treated with OCl⁻ (20.0 equiv.) (the 4thvial) and other other ROS/RNS (200.0 equiv.) (including •OH, H₂O₂, ¹O₂, OCl⁻, O₂•-, t-BuOO• and NO) under illumination with a 365 nm UV lamp.

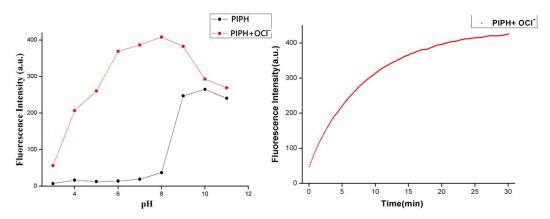
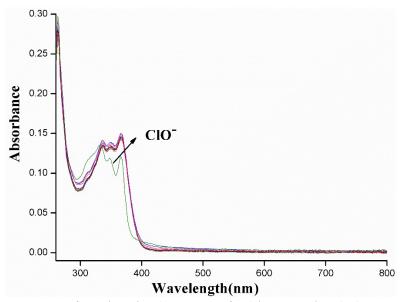



Figure S4 0.2 M NaOH aqueous solution was added to 200 mL mixed-acid system (0.06 M HAc - 0.06 M HCl - 0.06 H $_3$ BO $_3$) dropwise to prepare different pH level of the aqueous solution. The maximum intensity of probe PIPH in DMF-water (1:1, v/v) with or without OCl $^-$ was measured (left); Time-dependent fluorescence intensity (415 nm) changes of probe (5 μ M) in the presence of OCl $^-$ (20 equiv.) (λ ex = 330 nm) .

Figure S5 Absorption spectra of PIPH (5 μ M) in the presence of OCl⁻ (20.0 equiv.), and other anions (200.0 equiv.) (including AcO⁻, NO₃⁻, F⁻, SCN⁻, N₃⁻, H2PO4-, HPO₄²⁻, HCO₃⁻, Cl⁻)

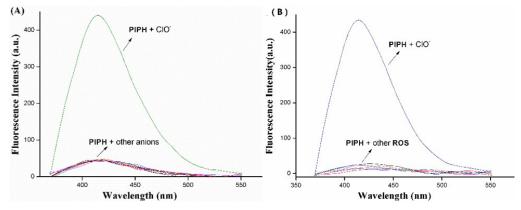
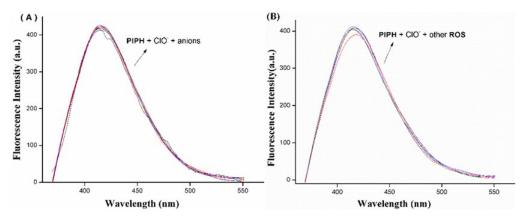



Figure S6 a) Fluorescence spectra of PIPH (5 μM) in the presence of OCl⁻ (20.0 equiv.) and other anions (200.0 equiv.) (including AcO⁻, NO₃⁻, F⁻, SCN⁻, N₃⁻, H₂PO₄⁻, HPO₄²⁻, HCO₃⁻, Cl⁻) b) Fluorescence spectra of the sensor (5 μM) towards OCl⁻ (20.0 equiv.) and other ROS/RNS (200.0 equiv.) (including \bullet OH, H₂O₂, 1 O₂, O₂ $^{\bullet}$, t-BuOO \bullet and NO)

Figure S7 a) Fluorescence spectra of the probe (5 μ M) in presence of Cys (20.0 equiv.) and other anions (AcO-, NO₃-, F-, SCN-, N₃-, H₂PO₄-, HPO₄-, HCO₃-, Cl-) **b)** Fluorescence spectra of the sensor (5 μ M) towards OCl- (20.0 equiv.) in addition of other ROS/RNS (\bullet OH, H₂O₂, 1 O₂, O₂ $^{\bullet}$ -, t-BuOO \bullet and NO)

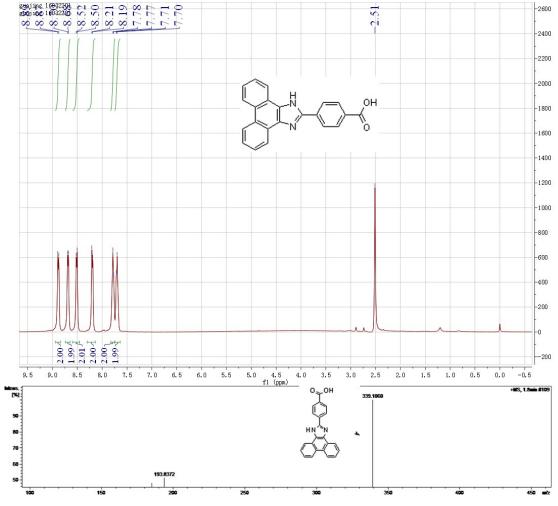


Figure S8 1 H NMR spectrum of probe PIPH treated with OCl $^-$ in d $_6$ -DMSO. High-resolution mass spectra of the product.

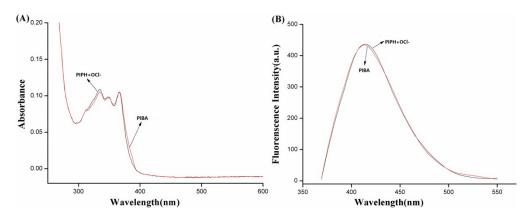


Figure S9 UV-Vis absorption and fluorescence emission spectra of PIPH treated with OCI⁻ (20.0 equiv.) and PIBA.

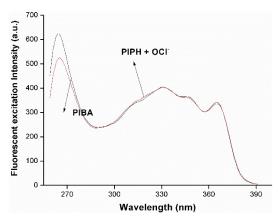


Figure S10 Fluorescence excitation spectra of PIPH treated with OCl⁻ (20.0 equiv.) and PIBA (λem=415 nm, slits: 2.5nm/2.5nm).

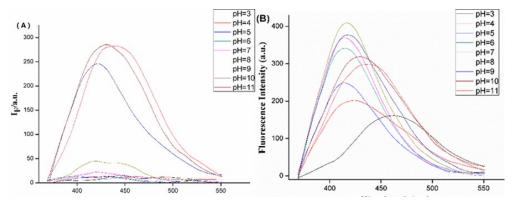


Figure S11 Fluorescence intensity of PIPH at different pH level without (a) or with OCl- (20.0 equiv.) (b)

Table 1 Electron transition configurations, excitation energies, and oscillator strengths (*f*) for main absorption band of **PIPH** and **PIBA**. The experimental data is shown for comparison.

	State	Major contrib. ^a	Energy(nm/eV)	f	Exp(nm)
PIPH	$S_0 \rightarrow S_1$	H→L (98.0%)	380/3.27	1.1925	370
	$S_0 \rightarrow S_2$	H-1→L (97.2%)	333/3.72	0.0025	310
	$S_1 \rightarrow S_0$	L→H (98.3%)	554/2.24	0.7244	-
PIBA	$S_0 \rightarrow S_1$	H→L (98.3%)	393/3.16	1.1264	405
	$S_1 \rightarrow S_0$	L→H (98.8%)	452/2.74	1.3320	415

^a 'H' means HOMO and 'L' means LUMO

Notes and references

- 1 (a) H. H. Fenton, Chem. News, 1876, 33, 190-190; (b) K. Setsukinai, Y. Urano,K. Kakinuma, H. J. Majima, T. Nagano, J. Biol. Chem., 2003, 278, 3170-3175.
- 2 (a) J. M. Aubry, J. Org. Chem., 1989, 54, 726-728; (b) N. Umezawa, K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, Angew. Chem. Int. Ed., 1999, 38, 2899-2901.
- 3 H. Gampp, S. J. Lippard, Inorg. Chem., 1983, 22 (2), pp 357-358.
- 4 (a) Z. Sun, F. Liu, Y. Chen, P. K. H. Tam, D. Yang, Org. Lett., 2008, 10, 2171-2174; (b) Y. Yang, H. J. Cho, J. Lee, I. Shin, J. Tae, Org. Lett., 2009, 11, 859-861.