Electronic Supplementary Information

A new flow-injection chromatography method exploiting linear-gradient elution for fast

quantitative screening of parabens in cosmetics

Margarita Barbatsi, Michael Koupparis, Anastasios Economou* Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 157 71 Athens, Greece

S1. Considerations for the implementation of linear gradient elution using flow rate modulation

All the gradient experiments in these work started with isocratic elution with a volumetric ratio of solvent 1:solvent 2 equal to 100:0 % (v/v) (although different starting ratios could be used). Then, the linear gradient was applied in which the solvent 1:solvent 2 volumetric ratio was varied from the starting value of 100:0 % (v/v) to the desired final value under computer control. The rate of change of the volumetric ratio, C%, could be calculated using the flow rate of the mobile phase, V_{i} , and the gradient rate, G, which is actually the rate of change of the flow rates of the 2 solvents:

$$C % (v/v \min^{-1}) = 100 \times G (mL \min^{-2}) / V_i (mL \min^{-1})$$
 (equation S1)

In this work, the selected flow rate of the mobile phase, $V_{i,}$ was 2.4 mL min⁻¹ and the selected rate of change of the flow rates of the 2 solvents, G, was 0.54 mL min⁻² so that the rate of change of the volumetric ratio, C%, was calculated as 22.5 % (v/v) min⁻¹ or 0.375 % (v/v) s⁻¹ for both solvents.

The time, t_f , required to cover the full linear gradient range solvent 1:solvent 2 volumetric ratio from 100:0 % (v/v) to 0:100 % (v/v) was calculated from:

$$t_f (min) = V_i (mL min^{-1})/G (mL min^{-2})$$
 (equation S2)

In the present work, the time required for a full gradient programme, t_f , was calculated as 4.44 min or 267 s. In this case, the flow rate of mG 1 was linearly varied from V_i to 0 while the flow rate of mG 2 was linearly varied from 0 to V_i (i.e. from 2.4 to 0 mL min⁻¹ and from 0 to 2.4 mL min⁻¹, respectively).

However, for reasons of speed, the linear gradient does not need to cover the full range of the volumetric fraction of solvent 1:solvent 2 from 100:0 % (v/v) to 0:100 % (v/v) but can be terminated after the last peak is eluted. The actual duration of the gradient, t_s , can be decided upon visual inspection of the chromatogram. Obviously $t_s < t_f$ and the flow rates of mG1 and mG 2 at t_s , $V_{1,s}$ and $V_{2,s}$, respectively, can be calculated from the formulas:

$$V_{1,s} (mL min^{-1}) = [t_f (min-t_s(min)] \times V_i (ml min^{-1}) / t_f (min)$$
(equation S3)

(equation S4)

Obviously, the equality

$$V_{1,s} + V_{2,s} = V_i$$
 (equation S5)

should always hold true. In the present system, the duration of the gradient was at $t_s = 3.82$ min and $V_{1,s}$ was calculated as 0.33 mL min⁻¹ while $V_{2,s}$ was calculated as 2.07 mL min⁻¹.

The volumetric fraction of the solvent 1 (% v/v), $S_{1,s}$, in the mobile phase at t_s could be calculated from:

 $S_{1,s} % (v/v) = (t_f - t_s)/t_f \times 100$ (equation S6)

while the volumetric fraction of the solvent 2 (% v/v), $S_{2,s}$, in the mobile phase at t_s could be calculated from:

$$S_{1,s} \% (v/v) = t_s/t_{f \times} 100 \qquad (equation S7)$$

In the present work, the volumetric ratio of solvent1:solvent 2 in the mobile phase at t_s was calculated as 14:86 % (v/v).

All these values were automatically calculated by the software using the flow rate of the mobile phase, $V_{i,}$ the gradient rate (i.e, the rate of change of the flow rate of the 2 solvents), G, and the duration of the gradient, t_s , as input parameters.

Fig. S1. Absorbance-time profiles recorded at 600 nm for 2 linear solvent gradients using water as solvent 1 and 2.5 μ mol L⁻¹ methylene blue as solvent 2 in the range 100:0 to 0:100 (v/v %) with gradient rates 0.54 and 1.08 mL min⁻² at a flow rate of 2.4 mL min⁻¹. An isocratic step of 0.66 min preceded the start of the gradient.

Fig. S2. Isocratic elution chromatograms using different compositions of: (A) ACN, (B) MeOH, (c) mixture of ACN and MeOH. Parabens concentration, 10 μ mol L⁻¹; flow rate, 2.1 mL min⁻¹; sample volume 45 μ L. The solvents in the green chromatograms were selected as solvents 1 in subsequent gradient elution experiments.

Table S1. Resolution between the MP and PP peaks using different solvents under isocratic conditions (green shading: selected solvents; red shading: solvents at which the resolution was $R_s < 1.5$ with either of the two calculation methods used; yellow shading: solvents with which the MP and EP peaks elute later)

Solvent 1 (%v/v)	R _s ^a	R _s ^b
ACN: H ₂ O 13:87	1.9	2.4
ACN: H ₂ O 15:85	1.6	2.1
ACN: H ₂ O 17:83	1.2	1.5
MeOH:H ₂ O 24:76	1.7	2.2
MeOH:H ₂ O 26:76	1.6	2.0
MeOH:H ₂ O 28:82	1.4	1.8
ACN:MeOH:H ₂ O 9:9:82	2.0	2.5
ACN:MeOH:H ₂ O 10:10:80	1.7	2.1
ACN:MeOH:H ₂ O 11:11:78	1.3	1.7

^a $R_s = 2(t_{R2}-t_{R1})/(w_1+w_2)$, where t_{R1} , t_{R2} are the retention times and w_1 , w_2 are the peak widths at baseline ^b $R_s = 1.18(t_{R2}-t_{R1})/(FWHM_1+FWHM_2)$, where FWHM are the peak widths at half maximum peak height.

Fig. S3. Gradient elution chromatograms using: (A) ACN as solvents 1 and 2, (B) MeOH as solvents 1 and 2, (C) mixture of ACN and MeOH as solvent 1 and MeOH as solvent 2. Parabens concentration, 10 μmol L⁻¹; flow rate, 2.1 mL min⁻¹; sample volume 45 μL; isocratic step, 1.25 min.

Fig. S4. Linear gradient elution chromatograms using ACN:MeOH:H₂O 10:10:20 (% v/v) as solvent 1 and ACN:H₂O 24:76 (% v/v) as solvent 2 with initial isocratic steps of different durations. Parabens concentration, 1.0×10^{-5} mol L⁻¹; flow rate, 2.1 mL min⁻¹; sample volume, 45 µ; gradient rate, 0.40 mL min⁻². The isocratic step in the green chromatogram (0.33 min) was selected for subsequent gradient elution experiments.

Fig. S5. Linear gradient elution chromatograms using ACN:MeOH:H₂O 10:10:80 (% v/v) as solvent 1 and ACN:H₂O 24:76 (% v/v) as solvent 2 at different flow rates. Parabens concentration, 10 μ mol L⁻¹; sample volume, 45 μ L; isocratic step, 20 s; gradient rate, 0.40 mL min⁻². The flow rate in the green chromatogram was selected for subsequent gradient elution experiments.

Fig. S6. Chromatograms using step gradient from ACN:MeOH:H₂O 10:10:80 % (v/v) to ACN-H₂O 24:76 % (v/v). Parabens concentration, 10 μ mol L⁻¹; flow rate, 2.4 mL min⁻¹; sample volume 45 μ L.

Concentration	МР		EP		PP		BP	
	RSD _r %							
1.0	3	4	3	4	5	5	a	a
2.0	1	3	3	3	4	4	5	4
5.0	1	2	1	2	2	3	3	4
10	0.6	0.9	1	2	1	3	1	3
20	0.5	0.7	0.6	1	0.9	2	1	2
40	0.5	0.6	0.6	1	0.9	0.8	0.9	1
50	0.5	0.7	0.5	1	0.8	1	0.9	1

Table S2. Repeatability and between-days reproducibility of the 4 parabens. The repeatability is expressed as the RSD_r % of peak areas (n=6) in a single day and the between-days reproducibility is expressed as the RSD_R % of concentrations calculated from the calibration plots (n=9) over 3 days.

^a For BP, 1 µmol L⁻¹ is below the LOQ

Variable	Low level (-)	Nominal value (0)	High level (+)	I _{exp} ^a
Flow rate (mL min ⁻¹)	2.28	2.4	2.52	[2.28, 2.52]
MeOH (% v/v) in solvent 1	9.5	10	10.5	[9.5, 10.5]
ACN (% v/v) in solvent 1	9.5	10	10.5	[9.5, 10.5]
ACN (% v/v) in solvent 2	23	24	25	[23, 25]
Isocratic elution time (min)	0.30	0.33	0.36	[0.30, 0.36]
Gradient rate (mL min ⁻²)	0.504	0.54	0.576	[0.504, 0.576]
Detection wavelegth (nm)	252	254	256	[252, 254]

Table S3. Parameters tested and their numerical values for the robustness study

^a $I_{exp} = [Low level (-), High level (+)]$