Fig. S1 Photograph of the hyphenation of circulated ultrasound-assisted extraction (CUAE), solvent concentration tank (SCT), centrifugal partition chromatography (CPC), and ultra-high performance liquid chromatography (UPLC)/PDA.

1: circulated ultrasound-assisted extraction (CUAE); 2: pump 1; 3: solvent concentration tank (SCT); 4: mobile phase bottle and the left six-port valve; 5: pump 3; 6: fraction collector; 7: centrifugal partition chromatography (CPC); 8: the right six-port valve; 9: ultra-high performance liquid chromatography couple with PDA detector (UPLC/PDA).

Fig. S2 Dose-dependent curves of chlorogenic acid, oleuropein aglycone,

dicaffeoylquinic acid, syringin and rutin.

(a) chlorogenic acid, (b) oleuropein aglycone, (c) dicaffeoylquinic acid, (d) syringin and (e) rutin

Fig. S3 Dose-dependent curves of kaempferol-3-O-rutinosidem, luteoloside, acteoside,

isoacteoside and isoquercetin.

(a) kaempferol-3-O-rutinosidem, (b) luteoloside, (c) acteoside, (d) isoacteoside and (e)

isoquercetin

Fig. S4 Dose-dependent curves of astragalin, syringopicroside, ligstroside, oleuropein

and syringopicroside aglycone.

(a) astragalin, (b) syringopicroside, (c) ligstroside, (d) oleuropein and (e) syringopicroside

aglycone

Table S1. Ultra-high performance liquid chromatography (UPLC)/PDA peak area of the compounds of the centrifugal partition chromatography (CPC) fractions 18–54 and the activities of the fractions.

Fracti		UPLC/PD	A peak ar	ea (mAu/s	5)	activities \pm S.D.	The functions
on ^a	luteol	isoque	astrag	isoact	acteos		
UII "	oside	rcetin	alin	eoside	ide	(n=3)	
18	15547	_	_	_	_	24.56 % ± 2.65 %	$\log 15547 \cdot x_7 = 24.56\%^{b}$
19	23521	_	_	_	_	26.21 % ± 2.21 %	$\log 23521 \cdot x_7 = 26.21 \%$
21	33565	1654	_	_	_	$30.92\% \pm 2.46\%$	$\log 33565 \bullet x_7 + \log 1654 \bullet x_8 = 30.92 \%$
22	29378	8998	_	_	-	31.33 % ± 3.16 %	$\log 29378 \cdot x_7 + \log 8998 \cdot x_8 = 31.33 \%$
23	23732	19225	_	_	-	32.08 % ± 3.21 %	$\log 23732 \cdot x_7 + \log 19225 \cdot x_8 = 32.08 \%$
24	13034	33365	_	_	_	$31.00\% \pm 2.96\%$	$\log 13034 \cdot x_7 + \log 33365 \cdot x_8 = 31.00 \%$
25	8554	36413	_	_	_	$30.04\% \pm 2.67\%$	$\log 8554 \bullet x_7 + \log 36413 \bullet x_8 = 30.04 \%$
26	6332	31554	_	_	_	$28.14\% \pm 2.85\%$	$\log 6332 \cdot x_7 + \log 31554 \cdot x_8 = 28.14 \%$
27	1445	20223	-	-	_	$24.56\% \pm 2.46\%$	$\log 1445 \cdot x_7 + \log 20223 \cdot x_8 = 24.56 \%$
28	596	8545	-	-	_	$22.50\% \pm 2.13\%$	$\log 596 \cdot x_7 + \log 8545 \cdot x_8 = 22.50 \%$
32	_	_	19665	565	_	$14.85\% \pm 2.24\%$	$\log 19665 \bullet x_9 + \log 565 \bullet x_{10} = 14.85 \%$
33	_	_	22565	1022	-	$15.38\% \pm 2.03\%$	$\log 22565 \bullet x_9 + \log 1022 \bullet x_{10} = 15.38 \%$
34	_	_	18554	6552	_	$18.75 \% \pm 2.06 \%$	$\log 18554 \bullet x_9 + \log 6552 \bullet x_{10} = 18.75 \%$
35	_	_	9954	10221	_	$20.02 \% \pm 1.96 \%$	$\log 9954 \bullet x_9 + \log 10221 \bullet x_{10} = 20.20 \%$
36	_	_	6521	28251	_	$21.21 \% \pm 2.64 \%$	$\log 6521 \bullet x_9 + \log 28251 \bullet x_{10} = 21.21 \%$
37	_	_	1225	40445	_	$21.48\% \pm 2.87\%$	$\log 1225 \bullet x_9 + \log 40445 \bullet x_{10} = 21.48 \%$
38	_	_	685	47998	_	$21.94\% \pm 2.36\%$	$\log 685 \bullet x_9 + \log 47998 \bullet x_{10} = 21.94 \%$
40	_	_	—	54738	_	19.47% ± 2.25 %	$\log 54738 \cdot x_{10} = 19.47 \%$
41		_	—	55445	_	$19.05\% \pm 2.51\%$	$\log 55445 \cdot x_{10} = 19.05 \%$
42	_	_	_	54665	-	$20.12\% \pm 2.27\%$	$\log 54665 \bullet x_{10} = 20.12\%$
43	_	_	_	52544	_	19.11% ± 2.68 %	$\log 52544 \cdot x_{10} = 19.11 \%$
44	_	_	—	50022	_	18.75% ± 2.55 %	$\log 50022 \cdot x_{10} = 18.75 \%$
45	_	_	_	48541	_	$18.45\% \pm 2.31\%$	$\log 48541 \cdot x_{10} = 18.45 \%$
46	_	_	—	42155	_	$18.10\% \pm 2.29\%$	$\log 42155 \cdot x_{10} = 18.10 \%$
49	_	_	—	34312	520	23.12 % ± 2.65 %	$\log 34312 \bullet x_{10} + \log 520 \bullet x_{11} = 23.12 \%$
50	_	_	—	25221	3545	$24.61 \% \pm 2.65 \%$	$\log 25221 \cdot x_{10} + \log 3545 \cdot x_{11} = 23.12 \%$
51	_	_	-	16866	9331	$24.44\% \pm 2.14\%$	$\log 16866 \bullet x_{10} + \log 9331 \bullet x_{11} = 23.12 \%$
52	_	_	-	10021	10011	$22.89\% \pm 2.29\%$	$\log 10021 \cdot x_{10} + \log 10011 \cdot x_{11} = 23.12 \%$
53	_	—	_	8875	3995	21.71 % ± 2.45 %	$\log 8875 \cdot x_{10} + \log 3995 \cdot x_{11} = 23.12 \%$
54	_	_	_	7532	823	$17.99\% \pm 1.95\%$	$\log 7532 \bullet x_{10} + \log 823 \bullet x_{11} = 17.99 \%$

^a Since the analysis error of the compound with peak areas less than 500 was relatively large, the fractions that contain the compounds with a peak area less than 500 were omitted.

^b x_7 - x_{11} : the tyrosinase inhibition ability coefficients of luteoloside, isoquercetin, astragalin, isoacteoside, and acteoside, respectively.

Table S2. Ultra-high performance liquid chromatography (UPLC)/PDA peak area of the compounds of the centrifugal partition chromatography (CPC) fractions 57–99 and the activities of the fractions.

		UPLC/F	PDA peak a	rea (mAu/s)		the functions
fracti on ^a	isoacteo side	syringo picrosid e	ligstrosi de	oleurop ein	syringopicr oside aglycone	activities (<i>n</i> =3)	
57	1821	1654	_	_	-	29.35 % ± 2.29 %	$\log 1821 \bullet x_{10} + \log 1654 \bullet x_{12} = 29.35$ % ^b
58	984	3198	_	_	_	$29.22 \% \pm 2.45 \%$	$\log 984 \bullet x_{10} + \log 3198 \bullet x_{12} = 29.32 \%$
59	565	5725	_	_	_	$29.84~\% \pm 2.82~\%$	$\log 565 \bullet x_{10} + \log 5725 \bullet x_{12} = 29.84 \%$
70	_	29664	_	_	_	$23.45\% \pm 2.84\%$	$\log 29664 \cdot x_{12} = 23.45 \%$
64	_	35223	_	_	_	$23.25 \% \pm 2.75 \%$	$\log 35223 \cdot x_{12} = 23.25 \%$
65	_	42554	_	_	_	$23.60\% \pm 2.94\%$	$\log 42554 \cdot x_{12} = 23.60 \%$
66	_	49854	_	_	_	23.95 % ± 2.75 %	$\log 49854 \cdot x_{12} = 23.95 \%$
69	_	56221	_	_	_	24.15 % ± 2.68 %	$\log 56221 \cdot x_{12} = 24.15 \%$
70	_	58225	_	_	_	24.51 % ± 2.33 %	$\log 58225 \cdot x_{12} = 24.51 \%$
71	_	63221	_	_	_	24.33 % ± 2.45 %	$\log 63221 \cdot x_{12} = 24.33 \%$
72	_	64574	_	_	_	24.85 % ± 2.16 %	$\log 64574 \cdot x_{12} = 24.85 \%$
73	_	62221	_	_	_	24.22 % ± 2.25 %	$\log 62221 \cdot x_{12} = 24.22 \%$
74	_	60221	_	_	_	23.65 % ± 2.34 %	$\log 60221 \cdot x_{12} = 23.65 \%$
75	_	58665	_	_	_	23.55 % ± 2.41 %	$\log 58665 \cdot x_{12} = 23.55 \%$
76	_	52336	_	_	_	22.84 % ± 2.18 %	$\log 52336 \cdot x_{12} = 22.84 \%$
77	_	42114	_	_	_	22.06 % ± 1.94 %	$\log 42114 \cdot x_{12} = 22.06 \%$
78	_	28223	_	_	_	21.22 % ± 2.27 %	$\log 28223 \cdot x_{12} = 21.22 \%$
79	_	18545	_	_	_	21.39 % ± 2.21 %	$\log 18545 \cdot x_{12} = 21.39 \%$
82	_	11021	685	_	_	26.15 % ± 2.54 %	$\log 11021 \bullet x_{12} + \log 685 \bullet x_{13} = 26.15$ %
83	_	8458	854	_	_	25.68 % ± 2.92 %	$\log 8458 \cdot x_{12} + \log 854 \cdot x_{13} = 25.68 \%$
88	_	5556	1321	_	552	35.54 % ± 3.05 %	$\log 5556 \cdot x_{12} + \log 1321 \cdot x_{13} + \log 552 \cdot x_{15} = 35.54 \%$
89	_	4221	1822	_	568	35.21 % ± 3.11 %	$\log 4221 \cdot x_{12} + \log 1822 \cdot x_{13} + \log 568 \cdot x_{15} = 35.21 \%$
90	_	3021	4552	_	985	36.15 % ± 2.98 %	$\log 3021 \cdot x_{12} + \log 4552 \cdot x_{13} + \log 985 \cdot x_{15} = 36.15 \%$
96	_	865	9665	1021	2654	39.71 % ± 3.45 %	$\log 865 \cdot x_{12} + \log 9665 \cdot x_{13} + \log 1021 \cdot x_{14} + \log 2654 \cdot x_{15} = 39.71 \%$
97	_	665	10313	2554	2221	40.23 % ± 3.27 %	$\log 665 \cdot x_{12} + \log 10313 \cdot x_{13} + \log 2554 \cdot x_{14} + \log 2221 \cdot x_{15} = 40.23 \%$
98	_	632	9752	4328	1254	40.71 % ± 2.98 %	$\log \ 632 \bullet x_{12} + \log \ 9752 \bullet x_{13} + \log 4328 \bullet x_{14} + \log \ 1254 \bullet x_{15} = 40.71 \%$

^a Since the analysis error of the compound with peak areas less than 500 was relatively large, the fractions that contain the compounds with a peak area less than 500 were omitted.

^b x_{10} , x_{12} - x_{15} : the tyrosinase inhibition ability coefficients of isoacteoside, syringopicroside, ligstroside,

oleuropein, and syringopicroside aglycone, respectively.