
Classification of polyethylene cling films by attenuated total reflectance-Fourier transform infrared spectroscopy and chemometrics

Christopher J Telford^{a+}, Benjamin A. Burrows^a, Georgina Sauzier^{a,b}, Wilhelm van Bronswijk^a, Max M. Houck^c, Mark Maric^d and Simon W Lewis*^{a,b}

Electronic Supplementary Information

Figure S1 Typical cling film spectrum (acquired from Coles Cling Wrap) over the full 4,000-400 cm⁻¹ spectral region. Red shaded region indicates absorbance interference attributed to the diamond sampling crystal

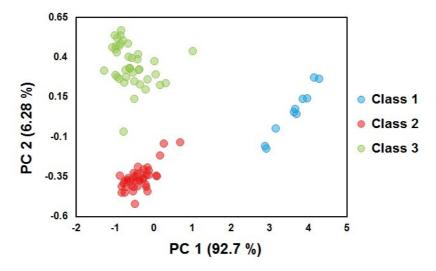


Figure S2 Two-dimensional PCA scores plot showing distribution of cling film samples into three distinct classes based on their infrared spectral properties using the entire spectral range between $4,000 - 400 \text{ cm}^{-1}$

^{a.} Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845.

b. Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, Western Australia 6845.

^c University of South Florida St. Petersburg, 140 7th Ave. South, Davis Hall, St. Petersburg, FL 33701

^{d.} National Centre for Forensic Science, University of Central Florida, Orlando, FL, USA

^{*}Corresponding author E-mail: s.lewis@curtin.edu.au

[†] Deceased.