Supporting Information for

Analysis of wild and farmed salmon using ¹³C solid-

state NMR and MRI directly on fillet tissue

Christian Totland^a*, John Georg Seland^a, Signe Steinkopf^b, Willy Nerdal^a

^aDepartment of Chemistry, University of Bergen, Norway

^bDepartment of Biomedical Laboratory, Sciences and Chemical Engineering, Bergen University College, Norway

> *Corresponding Author: Email: <u>christian.totland@uib.no</u> Phone: +47 55588233

This PDF includes:

¹³C T₁ values and shift assignments Additional ¹³C MAS NMR spectra

¹H T₁ values and spectra

F- and T-tests

Figure S1. ¹³C MAS spectrum of farmed salmon #1, labelled numerical in accordance with Table S1.

Table S1. ¹³C T_1 and Chemical Shift Assignments of MAS spectra of regular farmed salmon. Assignments based on (M. Aursand & Grasdalen, 1992) and (M. Aursand, Rainuzzo, & Grasdalen, 1993).

Number	Description	Carbon	T ₁ (sec) Farmed Salmon	T ₁ (sec) Wild Salmon
1	Carbonyl α/γ	$C_{\alpha/\gamma} = O$	4.1	2.1
2	Carbonyl β	C _β =O	3.3	1.6
3	Carbonyl β w/DHA	C _β =O	-	2.2
4	EPA C ₁₈ / DHA C ₂₀	-C=C-	4.9	5.2
5	ALA C ₁₆	-C=C-	3.8	Х
6	18:2 n-6 C ₁₃	-C=C-	-	_*
7	$\omega 9\ 20:1, C_{11-12} + 22:1 C_{13-14}$	-C=C-	2.8	1.1*
8	ω7 16:1 C ₉	-C=C-	-	-
9	ω9 18:1 C ₉	-C=C-	2.5	_*
10	DHA C ₅	-C=C-	2.3	1.0
11	EPA C ₅₋₆	-C=C-	2.1	1.3
12	Highly unsaturated f.a.	-C=C-	4.3	2.7
13	Polyunsaturated f.a.	-C=C-	4.3	2.0
14	Polyunsaturated f.a.	-C=C-	4.0	2.0
15	18:2 n-6	-C=C-	-	-
16	Not identified	-C=C-	-	2.4
17	EPA C ₁₇ / DHA C ₁₉	-C=C-	-	4.9
18	$C_{15} - ALA$	-C=C-	8.0	Х
19	All f.a.	$(C_{\alpha}O)$ - $(C_{\beta}O)$ - $(C_{\gamma}O)$	0.74	0.45
20	All f.a.	$(\underline{C}_{\alpha}O) - (\overline{C}_{\beta}O) - (\underline{C}_{\nu}O)$	0.48	0.25
21	All f.a.	O=C-CH ₂ -	0.99	0.51
22	All f.a.	O=C-CH ₂ -	1.08	0.54
23	Monounsaturated/saturated f.a.	$\underline{C}H_2$ - CH_2 - CH_3	4.14	1.9
25	18:2 n-6	$\overline{\mathrm{C}}\mathrm{H}_2\text{-}\mathrm{C}\mathrm{H}_2\text{-}\mathrm{C}\mathrm{H}_3$	-	-
26	f.a.	-CH ₂ -CH ₂ -CH ₂ -	2.0	1.1**
27	f.a.	-CH ₂ - <u>C</u> H ₂ -CH ₂ -	1.7	0.75**
28	f.a.	-CH ₂ - <u>C</u> H ₂ -CH ₂ -	2.0	1.1**
29	f.a.	-CH ₂ -CH ₂ -CH ₂ -	2.3	_**
30	f.a.	-CH ₂ -CH ₂ -CH ₂ -	1.5	0.67**
31	f.a.	-CH ₂ -CH ₂ -CH ₂ -	-	_**
32	Mono, di and 18:3	-CH ₂ -CH=C	2.2	0.87
33	Unsaturated f.a.	=CH-CH ₂ -CH=	4.6	1.9
34	C_3 – All F.a. except 22:6	-CH2-	1.4	0.68
35	All f.a.	- <u>C</u> H ₂ -CH ₃	6.1	3.2
36	DHA C ₃		-	-
37	All n-3 f.a.	-CH ₂ -CH ₃	9.8	2.33
38	Methyl $\omega 3$	-CH ₃	-	-
39	Methyl	-CH ₃	7.5	9.5

*Indistinguishable in wild salmon due to low occurrence

**This spectral region is quite different for farmed and wild salmon, and values are not directly comparable

Table S2. Omega-3 fatty acids analyzed in this study, with carbon resonances assigned in Figure 2 indicated in the molecular structures.

Additional ¹³C MAS NMR spectra

Figure S2. Spectra of farmed (bottom) and wild (top) salmon recorded with 256 transients, relaxation delay of 10 seconds, 50 msec acquisition time and high-power proton decoupling. The total experiment time is 20 minutes.

¹H T₁ values and spectra

Table S3. ¹H T₁ values and shift assignments of MAS spectra (Figure S3)

Figure S3. ¹H MAS spectra (2.5 kHz) of farmed and wild salmon. Assignments of the numbered peaks are in Table S2.

The similarity of the ¹H T₁ values for farmed and wild salmon is due to molecular dynamics

in the spin-diffusion regime of lipids in the adipose tissue. Hence, the values are less suited

than the ${}^{13}CT_1$ values to evaluate the chemical environment and mobility of the lipids.

F- and T-test

Table S4. All the statistic tests were carried out by comparing the contents of each type of fatty acid in two groups (farmed and wild salmon) at a significance level of 5%. The tests with corresponding p-values are listed in the table.

Fatty acid	F-test	T-test
Total n-3	p=0,15	p=0,38
ALA	*	p=1,02*10 ⁻⁷
DHA	p=0,35	p=2,5*10 ⁻⁶
EPA	p=0,16	p=2,1*10 ⁻⁶
n-6	*	1,76*10 ⁻⁷

* It was not possible to perform F-tests for the variances of the fatty acid contents of ALA and n-6, since these fatty acids were not detected in wild salmon. In these t-tests, it was assumed that the variance of the measurements were similar in farmed and wild salmon.

The F-tests showed that there were no difference in variances of measurements carried out in farmed and in wild salmon, which is indicated by p-values $> \alpha = 0.05$. Since the variances were equal in both groups (farmed and wild salmon) the t-tests with assumed equal variances were carried out. The t-tests were used to test if the differences in the fatty acid contents in farmed and wild salmon are significant.

The results of the t-tests shows that the total content of n-3 is similar in farmed and in wild salmon (p = 0.38). The other p-values from the t-tests show that there are significant differences in the fatty acid contents in farmed and wild salmon.

ALA and n-6 are only found in farmed salmon with p-values of 1.02×10^{-7} and 1.76×10^{-7} , respectively. Furthermore, t-tests on the contents of DHA and EPA differs significantly from farmed and wild salmon with p-values of 2.5×10^{-6} (DHA) and 2.1×10^{-6} (EPA).