MoS₂ Quantum-dots as Label-free Fluorescent

Nanoprobe for Highly Selective Detection of Methyl

Parathion Pesticide

Nafiseh Fahimi-Kashani[†], Ali Rashti[†], M. Reza Hormozi-Nezhad^{*,†,‡} and VahidehMahdavi^{‡†}

[†]Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran [‡]Institute of Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran ^{‡†}Pesticide Research Department, Research Institute of Plant Protection, Tehran 147574-4741, Iran The quantum yield(QY) of MoS_2 QDs is determined relative to reference quinine sulfate of known QY (0.546). The QY for the MoS2 QDs sample can be calculated as¹

$$QY = QY_{ref} \frac{\eta^2 I A_{ref}}{\eta_{ref}^2 I_{ref} A}$$

where QY_{ref} is the quantum yield of the reference compound, η and η_{ref} are the refractive index of the sample and reference solution, I and I_{ref} are the integrated intensities (areas) of sample and standard spectra, and A and A_{ref} represent the absorbance of sample and standard.

sample	Integrated Emission Intensity	Absorbance at 324 nm	Refractive Index of Solvent (η)	Quantum Yield
Quinine sulfate	29180.25	0.01412	1.33	0.546 ²
MoS ₂ QDs	1385.1	0.01437	1.33	0.025

Table S1. Quantum yield of MoS2 QDs

Figure S1 UV-Vis spectra of hydrolyzed MP (5 µg.mL⁻¹) at time intervals of 5 min at A) 25°C B) 50°C C) 75°C D) 95°C.

Figure S2 A) PL spectra of MoS_2 QDs in different pH and B) corresponding ratio of Original MoS_2 QDs PL intensity to MoS_2 QDs PL intensities at different pHs (415 nm). A decrease in PL intensities of MoS_2 QDs is observed with an increase pH. However, MoS_2 QDs are stable with Variation of pH in the range of 8 to 13.

Figure S3

Figure S3 Effect of time on sensor PL response in presence of 10 μ g.mL⁻¹MP and 2.5 mM hydroxide ions.

Figure S4

Figure S4 Plot of Stern–Volmer constants for p-NP quenching of MoS_2 QDs against emission wavelengths, and UV–vis spectra of p-NP in the 400–500 nm wavelength region.

Figure S5

Figure S5 UV-vis spectra of MoS_2 QDs and p-NP, as well as the theoretical and experimental profiles based on the sum of the MoS_2 QDs and p-NP spectra.

Figure S6 The hydrodynamic diameter of Synthesized MoS_2 QDs (A) and MoS_2 QDs in the presence of p-NP (B) measured by DLS method.

Figure S7 Colorimetric determination of MP. A) UV-Vis Spectra of p-NP formed through hydrolysis reaction of MPs at optimum condition by varying concentration of p-NP (hydrolyzed product pf MP) B) Digital images of solutions at t = 30 min according to increasing concentration of MPs. C) Calculated calibration curve for determination of MP showing a linear pattern at concentration ranges 1 μ g.mL⁻¹ to 15 μ g.mL⁻¹.

REFERENCES

- (1) Eaton, D. F. Pure Appl. Chem. 1988, 60, 1107-1114.
- (2) Brouwer, A. M. Pure Appl. Chem. 2011, 83, 2213–2228