Supplemental Information

Hyperbranched polymer based fluorescent probes for ppt level nerve agent

simulant vapor detection

Haibo Jiang^{a,b,c}, Pengcheng Wu^{a,b,c}, Yu Zhang^a, Zinuo Jiao^{a,c}, Wei Xu^{a,c}, Xiangtao Zhang^{a,c}, Yanyan Fu^a, Qingguo He^{a*}, Huimin Cao^a and Jiangong Cheng ^{a*}

^aState Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050, China.
^bSchool of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai, 201210, China.

^cUniversity of the Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100039, China.

Catalogue

Supporting Information	1
1. NMR data	3
2. Stability and Sensing Properties	5
3. Detection of possible interferents	5
4. Fluorescence spectra	7
5. Elemental Analysis data	8
6. Detail methodology and parameters of DMol3	8

1. NMR data

Figure S1. ¹H NMR spectrum of HPFP in CDCl₃.

Figure S3. ¹³C NMR spectrum of TPF in CDCl₃.

2. Stability and Sensing Properties

Figure S4. Stability and sensing properties of HPFP and TPF films in air and in saturated DCP vapor for 300 s (a: HPFP in air; b: HPFP in saturated DCP vapor; c: TPF in air; d: TPF in saturated DCP vapor).

3. Detection of possible interferents

Figure S5. Chemical structures of DCP and the available organophosphonate compounds.

Figure S6. HPFP films excited by UV lamp 365 nm after exposure in solvent vapor (1 H2O, 2 THF, 3 Acetone, 4 Ethyl Acetate, 5 Toluene, 6 Ethyl Alcohol, 7 Chloroform).

Figure S7. HPFP films excited by UV lamp 365 nm after exposure in DCP (left) and HCl (right) vapor.

Figure S8. Emission spectra of HPFP films after interaction with DCP and HCl.

Figure S9. Excitation and emission spectra of borate ester end capped pyrene-fluorene polymer before (a) and after (b) exposure to DCP vapor.

5. Elemental Analysis data

Table S1. Elemental Analysis data						
Sample		TPF	TPF+DCP	TPF+HCl		
Percentag Compositic	Ν	8.20%	5.55%	5.68%		
	С	84.48%	60.64%	60.31%		
	Н	6.94	6.68%	6.23%		
	Р		1.19%			
on e	Cl		13.03%	15.87%		

6. Detail methodology and parameters of DMol3

DMo	13
Task	Geometry
	Optimization
Properties	Optics, Orbitals
Energy	1.0 ⁻⁵ Ha
Max. force	0.002 Ha/Å
Max. displacement	0.005 Å
Max. interations	1000
Max. step size	0.3 Å
Functional	GGA,BLYP
Integration accuracy	Fine
SCF tolerance	Fine
Core treatment	All Electron
Basis set	DNP+
Basis file	4.4
Orbital cutoff quality	Fine
Run in parallel on	12 cores

Table S	2 Detail methodology	v and parameters of DM	-12
Table S.	2. Detail methodology		15