Dendrimer mediated clustering of bacteria: Improved aggregation and evaluation of bacterial response and viability.

Emma Leire,^{a,b} Sandra Amaral,^a Iria Louzao,^{b,c} Klaus Winzer,^d Cameron Alexander,^{b,*} Eduardo Fernandez-Megia^{a,*} and Francisco Fernandez-Trillo^{e,*}

- b. School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK. E-mail: cameron.alexander@nottingham.ac.uk
- ^{c.} Additive Manufacturing and 3D Printing Research Group, University of Nottingham, Nottingham NG7 2RD, UK
- d. School of Molecular Medical Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Nottingham NG7 2RD, UK
- e. School of Chemistry, University of Birmingham. B15 2TT, UK. E-mail: f.fernandez-trillo@bham.ac.uk

Dendrimer Characterisation

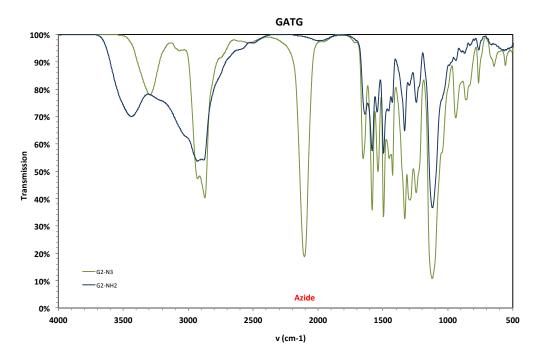


Figure S1: Representative monitoring of the synthesis of $Gn-NH_2$ and the disappearance of azide peak. IR spectra of $G2-N_3$ (green) and $G2-NH_2$ (blue).

^{a.} Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain. E-mail: <u>ef.megia@usc.es</u>

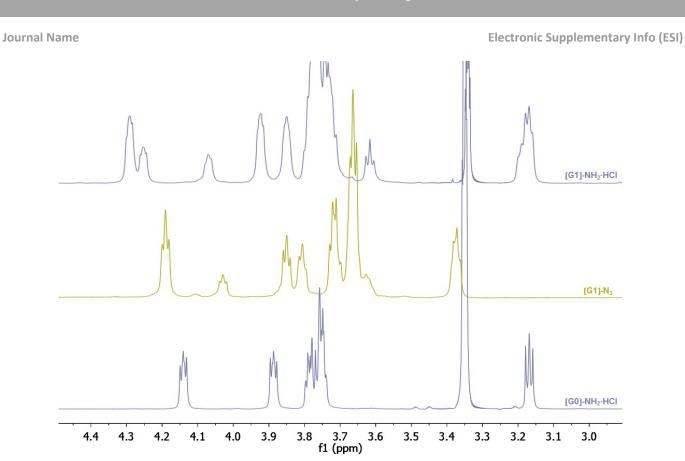


Figure S2: Representative monitoring of the synthesis of $Gn-NH_2$: ¹H-NMR spectra of 1,3,5-tri(2-(2-(2-aminoethoxy)ethoxy)ethoxy)benzene (G0-NH₂), G1-N₃ and G1-NH₂. ¹H-NMR spectra for the G1-N₃ was performed in CDCl₃ and G0-NH₂ and G1-NH₂ in CD₃OD.

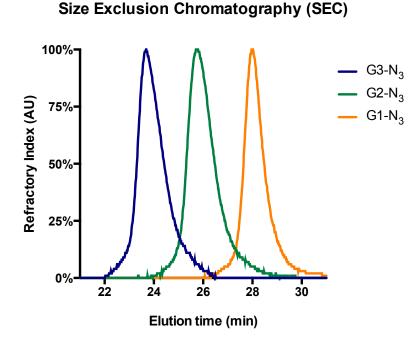


Figure S3: Normalised size exclusion chromatograms for GATG dendrimer G1-N₃ (orange), G2-N₃ (green) and G3-N₃ (blue). THF was used as an eluent at 1 mL/min. Samples were filtered through a 0.45 μ m filter before injection.

Electronic Supplementary Info (ESI)

Gn-NH₂	Amines	Mw / Da	Size / nm	ζ/mV
G1-NH₂	9	2389	-	-
G2-NH ₂	27	7765	3.62 ± 0.42	30.6 ± 2.46
G3-NH₂	81	23891	5.68 ± 0.39	48.2 ± 4.75

Table S1: Number of surface amines, theoretical molecular weight, experimental size (as determined by DLS at 25 °C with hydrochloride amino dendrimers (1.5 mg/mL) in a 10 mM NaH₂PO₄ 10% HCl 0.1M solution) and ζ -potential (as determined with hydrochloride amino dendrimers (10 mg/mL) in milliQ water).

Clustering of Vibrio harveyi

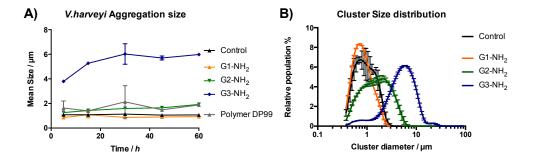


Figure S4: A) Mean cluster size of V. harveyi BB170 in the absence (black) and presence of G1-NH₂ (orange), G2-NH₂ (green), G3-NH₂ (blue) and p(DMAPMAm) DP 99 (grey). B) Size distribution of V. harveyi's clusters in the absence (black) and presence of G1-NH₂ (orange), G2-NH₂ (green) and G3-NH₂ (blue). Initial OD₆₀₀ = 1, [NH₂] = 0.33 mM in PBS at pH 7.4

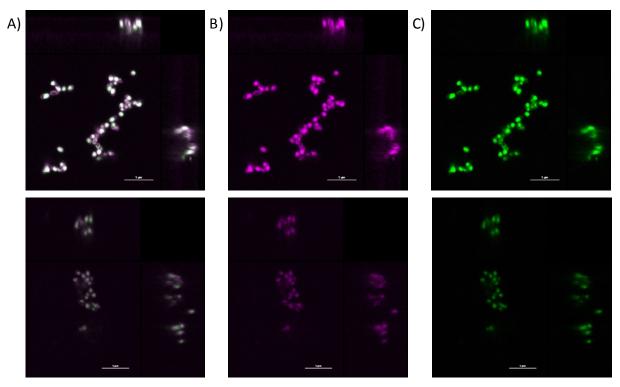


Figure S5: Confocal Laser Scanning Micrographs of *V. harveyi* BB170 (green) in the presence of MCCA labelled $G3-NH_2$ (magenta). A) Ortho projections from the overlaid magenta and green channels (white) including Z-stacks with transmission micrograph. B) Ortho projections for the blue channel and C) green channel with transmission micrograph. In all cases, the blue channel has been depicted magenta for clarity.

ζ-potential of V. harveyi

A single colony of *V. harveyi* from LB agar plates was used to inoculate 2 mL of LB medium containing 50 μ g/mL kanamycin and incubated overnight at 30 °C. Bacteria were centrifuged at 9,000 rpm for 5 min at 4 °C, the supernatant was discarded and bacteria re-suspended in PBS. This washing step was repeated two times and bacteria were finally re-suspended at an OD₆₀₀ = 1.0. Aliquots of the bacteria culture were mixed with known volumes of stock solutions of Gn-NH₂ in PBS pH 7.4. The mixture was incubated for 1 h at room temperature. The dendrimer-bacteria mixture was centrifuged at 9000 rpm for 5 min and sample was resuspended in water prior to measurement. The values of the concentrations reported corresponds to the final NH₂ concentration (mM) on dendrimers in the bacteria-suspension.

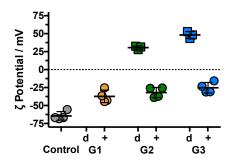
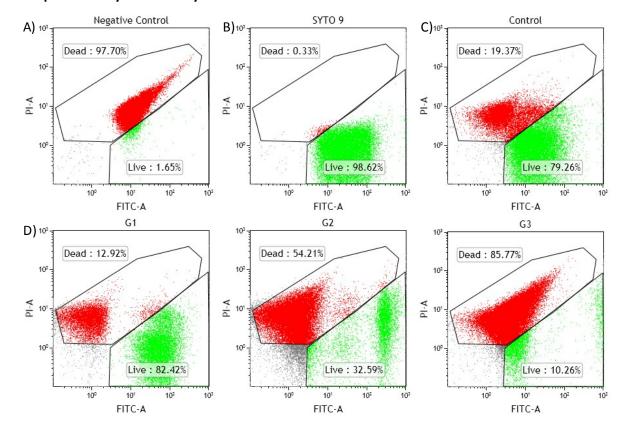



Figure S6: ζ -potential for Gn-NH₂ dendrimers (squares, [Gn-NH₂]=1.5 mg/mL); and for *V. harveyi BB170* (circles) in the absence (control) and presence of G1-NH₂ (orange), G2-NH₂ (green) and G3-NH₂ (blue). (Initial OD₆₀₀ = 1, [NH₂] = 1.64 mM in water. ζ -potential of the dendrimers taken from Table S1.

Membrane permeability and viability

Figure S7: Flow cytometry of *V. harveyi* BB170 stained with propidium iodide (PI, red staining) and SYTO-9 (green staining). Red fluorescence was recorded on the PI channel (PI-A on y-axis) and green fluorescence on the FITC channel (FITC-A on x-axis). Gated population of *V. harveyi* BB170 based on calibration with A) bacteria treated with *i*-PrOH as a negative control

Electronic Supplementary Info (ESI)

and stained with PI and SYTO-9 and B) non-treated bacteria stained with only SYTO-9 staining. C) Gated population of *V. harveyi* stained with PI and SYTO-9 in the absence (Control) and D) presence of Gn-NH₂ dendrimers for 1h at room temperature. Initial $OD_{600} = 1$, $[NH_2] = 1.64$ mM in PBS at pH 7.4. Values account for percentage of total number of counted cells.

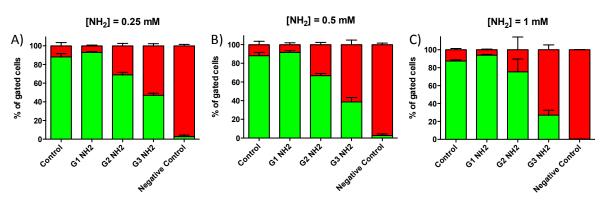


Figure S8: Normalized population of *V. harveyi* BB170 presented as the percentage of green and red cells. *V. harveyi* was incubated in the absence (control) and presence of $Gn-NH_2$. Bacteria were treated with *i*-PrOH as a negative control. Initial $OD_{600} = 1$. Bacteria diluted 5,000 fold in AB medium prior to incubation with $Gn-NH_2$. Final $[NH_2] = 0.25 \text{ mM}$ (A), 0.5 mM (B) and 1 mM (C).

Luminescence

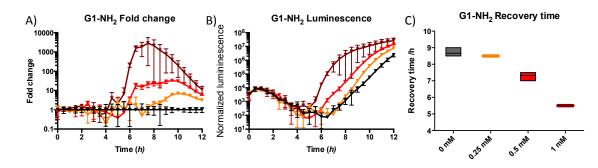


Figure S9: Luminescence of V. harveyi BB170 in the absence (black) and presence of $G1-NH_2$: $[NH_2] = 0.25$ mM (orange), 0.5 mM (red) and 1 mM (dark red). A) Fold increase of luminescence, B) normalised luminescence and C) recovery time.

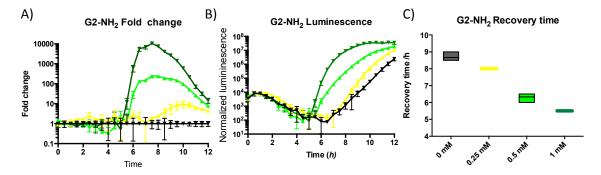


Figure S10: Luminescence of V. harveyi BB170 in the absence (black) and presence of $G2-NH_2$: $[NH_2] = 0.25 \text{ mM}$ (yellow), 0.5 mM (light green) and 1 mM (dark green). A) Fold increase of luminescence, B) normalised luminescence and C) recovery time.

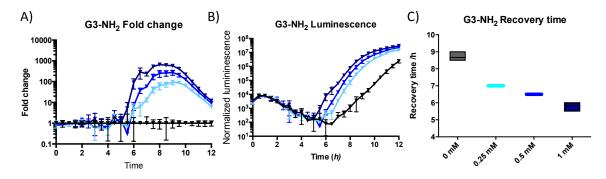


Figure S11: Luminescence of V. harveyi BB170 in the absence (black) and presence of $G3-NH_2$: $[NH_2] = 0.25 \text{ mM}$ (light blue), 0.5 mM (blue) and 1 mM (dark blue). A) Fold increase of luminescence, B) normalised luminescence and C) recovery time.

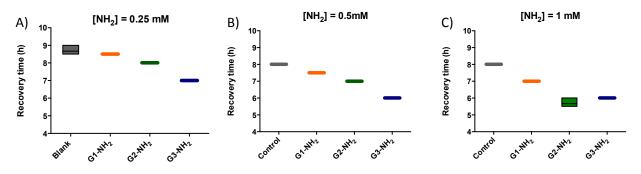


Figure S12: Representative generation dependent reduction (3 experiments) in the recovery time for $Gn-NH_2$ at 0.25 mM (A), 0.5 mM (B) and 1 mM (C).

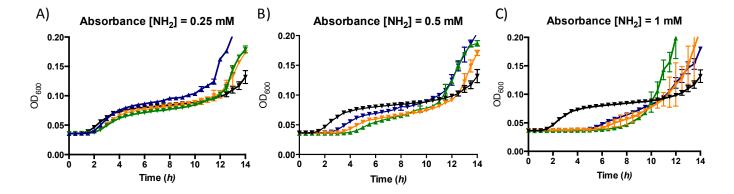


Figure S13: OD_{600} of *V. harveyi* BB170 in the absence (black) and presence of G1-NH₂ (orange), G2-NH₂ (green) and G3-NH₂ (blue) at [NH₂] = 0.25 mM (A), 0.5 mM (B) and 1 mM (C).

Electronic Supplementary Info (ESI)

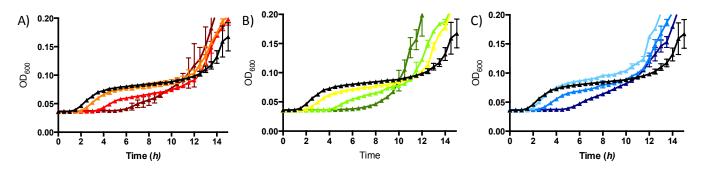


Figure S14: OD_{600} of *V. harveyi* BB170 in the absence (black) and presence of G1-NH₂ (A): [NH₂] = 0.25 mM (orange), 0.5 mM (red) and 1 mM (dark red); G2-NH₂ (B): [NH₂] = 0.25 mM (yellow), 0.5 mM (light green) and 1 mM (dark green); and G3-NH₂ (C): [NH₂] = 0.25 mM (light blue), 0.5 mM (blue) and 1 mM (dark blue).