Supporting Information

Influence of Cell Size on Cellular Uptake of Gold Nanoparticles

Xinlong Wang^{1,2}, Xiaohong Hu^{1,3}, Jingchao Li^{1,2}, Adriana C Mulero Russe^{1,4}, Naoki Kawazoe¹, Yingnan Yang³ and Guoping Chen^{1,2*}

 ¹Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
²Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
³Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
⁴Chemical Engineering, University of Puerto Rico, Mayaguez, PR 00681 USA.

Supplementary Figure 1. Characterization of citrate-AuNPs. (A) and (B) are SEM and TEM images of the citrate-AuNPs.

Supplementary Figure 2. The thickness of the F-actin filaments of the micropatterned MSCs that were cultured on the micropatterns with microdots having diameters of 20, 40, 60 and 80 μ m for 6 h. **p < 0.01 and ***p < 0.001 (n = 80).

Supplementary Figure 3. Fluorescence images of the micropatterned MSCs after being cultured on the micropatterned surfaces for 24 h without treatment of FITC-PEG-AuNPs.

Supplementary Figure 4. Average fluorescence intensity per unit membrane area of the micropatterned MSCs when the 20 μ m diameter cells were treated as hemispherical shape. **p < 0.01 and ***p < 0.001 (n = 3).