Biomaterials Science

Electronic Supplementary Information

Dual-component Collagenous Peptide/ Reactive Oligomer Hydrogels as Potential Nerve Guidance Materials - from Characterization to Functionalization

C. Kohn,^a J. M. Klemens,^b C. Kascholke,^a N. S. Murthy,^c J. Kohn,^c M. Brandenburger,^b M. C. Hacker^{a+}

oPNMA- x				COL	base			
		derivatization					figure	description
- <i>x</i>	[%]	DEED	6-AF	[%]	type	[%]	Ū	·
7.5	3.5	-		15	ΝΜΡΟ	10, 8, 6, 4, 2	1 (S 2, S 3)	 storage modulus G´ of cGEL_{monolith} of independent oPNMA batches and varying base concentration; S 2: gelation profile of cGEL dual component mixture; S 3: quantification of gelation profile S2
		-		15	NMPO	2	4 (S 6)	 4: in vitro cell seeding on cGEL_{disc} S 6: storage modulus of cGEL_{disc}
10	 3.5 	- x □		7.5, 10, 12.5, 15	TEA NMPO NMPO	10, 2 2 2	2A	quantification of leachable components from cGEL_{disc}
		- x		7.5, 10, 12.5, 15	TEA NMPO NMPO	2 2 2	2B 3C	storage modulus G' of cGEL_{disc}
		- x 🗆		15	NMPO	6, 4, 2	2C	leachables and cross-linking degree of cGEL _{disc} and cGEL _{monolith}
		- x 🗆		15	NMPO	6, 4, 2	2D (S 4) 3D	2D, 3D: storage modulus G' of cGEL _{monolith} ; S 4: compression test of cGEL _{monolith}
		- x		15	ΝΜΡΟ	2	3B (S 5)	3B: gelation profile of cGEL dual- component mixture with oPNMA derivatized for 0 h, 1 h and 4h;
		- x 🗆		15	ΝΜΡΟ	2	4 (S 6)	 S 5: storage modulus G' of cGEL_{disc} 4: in vitro cell seeding (hSGSCs) and cytotoxicity testing (L929) on cGEL_{disc}; S 6: storage modulus of cGEL_{disc}
			x	15	NMPO	2	5C	derivatization pattern of cGEL _{conduit}
12.5	3.5	- - x □		7.5, 10, 12.5, 15	TEA NMPO NMPO	10, 2 2 2	2A	quantification of leachable components from cGEL_{disc}
		- -		7.5, 10, 12.5, 15	TEA NMPO	2	2B	storage modulus G´ of cGEL_{disc}
		- x		15	NMPO	6, 4, 2	2C	leachables and cross-linking degree of cGEL _{disc} and cGEL _{monolith}
		- x		15	NMPO	6, 4, 2	2D 3D	storage modulus G´ of cGEL_{monolith}
		x		15	NMPO	2	5A, 5B (S 6)	characterization of cGEL_{conduit} 5A: conduit dimensions; 5B: leachables and water content; 5 6: conduit dimensions after rehydration

S 1 Cross-linked hydrogel cGEL composition as used in this study. Concentrations %(w/v) are given as values during gelation; Abbreviations: oligo(PEDAS-co-NiPAAm-co-MA) (oPNMA), Collagel® (collagen hydrolysate) (COL), triethylamine (TEA), *N*-methylpiperidin-3-ol (NMPO), *N*,*N*-diethylethylendiamine (DEED), 6-Aminoflourescein (6-AF), human sweat gland derived stem cells (hSGSCs), L929 mouse fibroblasts (L929).

^{a.} Institute of Pharmacy, Pharmaceutical Technology, Leipzig University, 04317 Leipzig, Germany

^{b.} Fraunhofer Research Institution for Marine Biotechnology EMB, 23562 Lübeck, Germany

^c New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey,

Piscataway, New Jersey 08854-8066, USA

⁺ Corresponding author: mhacker@uni-leipzig.de

See DOI: 10.1039/x0xx00000x

S 2 Kinetics of cGEL cross-linking. Storage moduli monitored over time for oPNMA-7.5 (3.5% in gelation mix), COL (15% in gelation mix), two base types and five base concentrations (base%). Data points are averaged (n = 5). Graphs are coded as follows: TEA (solid line), NMPO (dashed line), base%: 10% (x), 8% (\Box), 6% (\Box), 6% (\Box), 6% (\Box), 2% (\blacklozenge). Base type and base% strongly affected gelation speed. Gelation decelerated at 4% and 2% NMPO. With TEA gelation was faster than with NMPO. Slowest gelation was found for 2% NMPO. Formulations with slower gelation kinetics resulted in increased storage moduli (G'_{max}) at the end of measurement.

100 1800 90 d 1620 80 T 1440

ne Royal Society of Chemistry 20xx

S 3 Analysis of cGEL gelatior derived from the curves show NMPO (☐) (bars). Diamonds and means with different lett the parameter t_{0.25*G'max} wa accelerated for TEA 4%. In ac reduced TEA%. Thus, TEA di extracted for NMPO. The ge t_{0.25*G'max} was significantly init the gelation speed. Based on

e gelation mix). Data were d for 10%-2% TEA (\Box) and standard deviation (n = 5) pendent of absolute G'_{max}, lation speed and was also it change significantly with elation profiles were also Compared to NMPO 10%, lid not directly correlate to ces.

S 4 Compression test of cGEL_{monolith}. Young's moduli were measured on distinct 17 mm thick cGEL_{monolith} using a Sintech 5/D mechanical tester (MTS, Eden Prairie, Minnesota, USA) and 100 N load cell. Tests were carried out at a crosshead speed of 0.5 mm/min until 50% strain was reached. The force-elongation curves were converted into engineering stress-strain from which the compressive moduli were calculated. Columns represent means \pm standard deviations (n = 5). Means with different letters are statistically significantly different (p < 0.05). The compression for cGEL cylinders from oPNMA-10 and -12.5 (3.5% in gelation mix) with COL (15% in gelation mix) and NMPO 6% (\Box), 4% (\Box), or 2% (\Box) in gelation mix was measured. Results reflect increase of mechanical stiffness with decreased base%. Moduli were approximately one order of magnitude higher than G' for identical formulations. Differences between oPNMA-10 and -12.5 were only statistically significant for NMPO 6%.

S 5 Storage moduli of pristine and derivatized $CGEL_{disc}$. Discs derived from COL (15% in gelation mix) and oPNMA-10 or oPNMA-10^{+DEED} (3.5% in gelation mix) with NMPO (2% in gelation mix). For measurement of moduli for pristine $cGEL_{disc}(\Box)$, two oPNMA-10 solutions (*i* and *ii*) were used for fabrication. Afterwards, DEED was added to solution *ii*, derivatized to oPNMA-10^{+DEED} for 1 h and 4 h and $cGEL_{disc}^{+DEED}$ (striped) were fabricated. In parallel, solution *i* was stirred for 1 h and 4 h without DEED and control $cGEL_{disc}$ (\Box) were fabricated. G' was irrespective of functionalization and incubation time as no significant differences between pristine and derivatized $cGEL_{disc}$ were detected. Any incorporation between 1 h and 4 h can be considered without negative impact on mechanical attributes of resulting gel matrices.

S 6 Storage moduli G' of pristine and DEED-derivatized cGEL_{disc} with COL (15% in gelation mix), NMPO (2% in gelation mix) and oPNMA-7.5, -10 or -10^{+DEED} (3.5% in gelation mix) as used for cell culture experiment with hSGSCs. Data is presented as means ± standard deviations (n = 5). No statistically significant differences between groups were observed. Thus, differences in cell attachment and spreading on cGEL and cGEL^{+DEED} were triggered by chemical modification and focal adhesion sites and not by differences in hydrogel stiffness.

Biomaterials Science

S 7 Dimensional parameters of cGEL_{conduit} fabricated from different mold assemblies. Formulations were derived from oPNMA-12.5^{+DEED} (3.5% in gelation mix), COL (15% in gelation mix) and NMPO (2% in gelation mix). Outer diameter (OD), inner diameter (ID) and wall thickness (WT) in hydrated (\Box), freeze-dried (\Box) and rehydrated (\Box) state for four different conduit-molding geometries (g). Molds were assembled from silicone tubes and stainless steel cannula (inner diameter of silicon tubes: g_1 , $g_2 = 4$ mm; g_3 , $g_4 = 2.5$ mm; outer diameter of dispensing cannulas: $g_1 = 1.9$ mm, $g_2 = 0.8$ mm, $g_3 = 1.65$ mm, $g_4 = 0.7$ mm). Means with different letters are statistically significantly different (p < 0.01). Conduit dimensions were predefined by the mold geometry and initial dimensions were almost perfectly recovered after freeze-drying and rehydration. At the same time, conduits showed sufficient robustness during processing and predictable dimensional reconstitution after rehydration.