Metal Catalyst-free Substitution of Allylic and Propargylic Phosphates with DiarylmethylAnions
Hidehisa Kawashima, Narihito Ogawa, Ryohei Saeki and Yuichi Kobayashi*
Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
Part 1: Experimental S2
General Information S2
Materials S2
GP1: General Procedure for Phosphorylation of Alcohols S2
Phosphates S2
Reaction of 4- PyPhCH_{2} (1e) with BuLi S7
GP2: General Procedures for Substitution of Phosphates with Diarylmethanes using BuLi S7
GP3: General Procedures for Substitution of Phosphates with Diarylmethanes using LDA S7Allylic ProductsS7
Propargylic Products S14
Part 2: References S17
Part 3: D-Incorporation Experiments of $\mathbf{P h}_{2} \mathbf{C H}_{\mathbf{2}}$ (1a) (Table S1) S18
Part 4: Determination of Enantiomeric, Diastereomeric, Regioisomeric Ratios S23
Part 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra to Establish Identity and Purity S55
Phosphates S56
Reaction Product 29 derived from 4- PyPhCH_{2} (1e) with BuLi 370
Allylic Products S71
Propargylic Products S94

Part 1: Experimental

General Information

The ${ }^{1} \mathrm{H}(300$ or 400 MHz$)$ and ${ }^{13} \mathrm{C}$ NMR (75 or 100 MHz) spectroscopic data were recorded in CDCl_{3} using $\mathrm{Me}_{4} \mathrm{Si}(\delta=0 \mathrm{ppm})$ and the centreline of the triplet $(\delta=77.1 \mathrm{ppm})$, respectively, as internal standards. Signal patterns are indicated as br s (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). Coupling constants (J) are given in Hertz (Hz). Chemical shifts of carbons are accompanied by minus (for C and CH_{2}) and plus (for CH and CH_{3}) signs of the attached proton test (APT) experiments. High-resolution mass spectroscopy (HRMS) was performed with a double-focusing mass spectrometer with an ionization mode of positive FAB or EI as indicated for each compound. The solvents that were distilled prior to use are THF (from $\mathrm{Na} /$ benzophenone), $\mathrm{Et}_{2} \mathrm{O}$ (from $\mathrm{Na} /$ benzophenone) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (from CaH_{2}). Products were purified by chromatography on silica gel (Kanto, spherical silica gel 60 N). Regioselectivity is expressed by $\%$ rs or by ratios of the products.

Materials

Alcohol $(R)-6$, which had been prepared previously from (R)-but-3-yn-2-ol $((R)-117)$ of 98% ee, ${ }^{\text {S1 }}$ was converted to (R) - $\mathbf{3}$ (vide infra). (S)- and (R)-MTPA acids (both 99% ee) were purchased from Aldrich.

GP1: General Procedure for Phosphorylation of Alcohols

To a solution of an alcohol (1 equiv) and N-methylimidazole (>1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added diethyl chlorophosphate (>1 equiv). The solution was stirred at rt and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc several times. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residual oil was purified by chromatography on silica gel to give the phosphate.

Phosphates

(R, E)-5-((tert-Butyldimethylsilyl)oxy)pent-3-en-2-yl diethyl phosphate ($(R)-3)$

(R)-6
(R)-3

According to GP1 using alcohol $(R)-\mathbf{6}^{\mathrm{S} 1}(98 \%$ ee, $220 \mathrm{mg}, 1.03 \mathrm{mmol})$, diethyl chlorophosphate ($0.22 \mathrm{~mL}, 1.54$ $\mathrm{mmol})$ and N-methylimidazole ($0.15 \mathrm{~mL}, 1.85 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt for 12 h afforded phosphate $(R)-3$ ($343 \mathrm{mg}, 95 \%$ yield): $R_{\mathrm{f}} 0.37$ (hexane/EtOAc 1:1); IR (neat) $1472,1390,1259,1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.03(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{dt}, J=1.0,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{dt}, J=1.0,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 3.99-4.12(\mathrm{~m}, 4 \mathrm{H}), 4.13-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.92$ (sext., $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=15.3,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.79(\mathrm{dt}, J=15.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.3(+), 16.1(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 18.4(-), 22.3(+)(\mathrm{d}$, $J=5 \mathrm{~Hz}), 25.9(+), 62.7(-), 63.50(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 63.54(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 75.2(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 129.5(+)(\mathrm{d}, J$ $=5 \mathrm{~Hz}), 131.5(+)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ APT NMR spectra were consistent with those reported. ${ }^{\text {S1 }}$

(E)-6-((tert-Butyldimethylsilyl)oxy)hex-4-en-3-yl diethyl phosphate (7)

According to the literature procedure ${ }^{\mathrm{S} 1}$ a mixture of alcohol 101 ($193 \mathrm{mg}, 0.835 \mathrm{mmol}$), diethyl chlorophosphate ($0.18 \mathrm{~mL}, 1.25 \mathrm{mmol}$) and N -methylimidazole ($0.12 \mathrm{~mL}, 1.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at rt for 12 h to afford phosphate $7\left(275 \mathrm{mg}, 90 \%\right.$ yield): $R_{\mathrm{f}} 0.35$ (hexane/EtOAc 2:1); IR (neat) 1472, 1390, 1259, 1035, $837 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{dt}$, $J=1.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{dt}, J=1.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.83(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.15(\mathrm{~m}, 4 \mathrm{H}), 4.16-4.21(\mathrm{~m}, 2 \mathrm{H})$, 4.73 (quint., $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (ddt, $J=15.4,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dt}, J=15.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3(+), 9.3(+), 16.13(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 16.15(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 18.4(-), 25.9(+), 29.1(-)(\mathrm{d}, J=$ $6 \mathrm{~Hz}), 62.7(-), 63.46(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 63.48(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 80.4(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 128.0(+)(\mathrm{d}, J=4 \mathrm{~Hz})$, $132.9(+)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-APT NMR spectra were consistent with those reported. ${ }^{\mathrm{S} 1}$
(E)-6-((tert-Butyldimethylsilyl)oxy)-2-methylhex-4-en-3-yl diethyl phosphate (8)

According to GP1 using alcohol $102(76 \mathrm{mg}, 0.31 \mathrm{mmol})$, diethyl chlorophosphate ($0.067 \mathrm{~mL}, 0.47 \mathrm{mmol}$) and N-methylimidazole ($0.044 \mathrm{~mL}, 0.56 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt for 12 h afforded phosphate $8(113 \mathrm{mg}, 95 \%$ yield): $R_{\mathrm{f}} 0.41$ (hexane/EtOAc 2:1); IR (neat) $1471,1389,1258,1037 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06$ (s, $6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{dt}, J=1.0,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1,32(\mathrm{dt}, J=$ $1.0,7.1 \mathrm{~Hz}, 3 \mathrm{H}$), 1.93 (d of sept., $J=6.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{dm}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{dt}, J$ $=6.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{ddt}, J=15.4,7.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{ddt}, J=15.4,4.2,0.6 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.3(+), 16.1(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 16.2(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 17.6(+), 18.0(+), 18.4(-), 25.9(+), 33.4$ $(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 62.7(-), 63.5(-)(\mathrm{d}, J=5 \mathrm{~Hz}), 84.0(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 126.1(+)(\mathrm{d}, J=3 \mathrm{~Hz}), 133.8(+)$; HRMS (FAB): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{PSi}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 381.2226$, found 381.2218 .

Diethyl hex-1-en-3-yl phosphate (9)

To a suspension of Mg turning ($174 \mathrm{mg}, 7.16 \mathrm{mmol}$) in THF (3 mL) was added 1-bromopropane (0.54 mL , 5.97 mmol) dropwise under reflux. The resulting mixture was cooled to rt and diluted with THF (3 mL). Acrolein (103) $(0.20 \mathrm{~mL}, 2.99 \mathrm{mmol})$ was added to the mixture dropwise. The mixture was stirred at rt for 1 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated to afford crude alcohol 104, which was used for the next reaction without further purification.

According to GP1 using the above alcohol 104, diethyl chlorophosphate ($0.86 \mathrm{~mL}, 5.98 \mathrm{mmol}$) and N -methylimidazole ($0.59 \mathrm{~mL}, 7.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at rt for 1 h afforded phosphate $9(481 \mathrm{mg}, 68 \%$ yield from 103): $R_{\mathrm{f}} 0.36$ (hexane/EtOAc 2:1); IR (neat) $1264,985 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.32(\mathrm{dt}, J=1.0,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{dt}, J=1.0,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.66-1.78(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.75(\mathrm{ddt}, J=7.1,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dt}, J=10.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ $(\mathrm{dt}, J=17.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{ddd}, J=17.3,10.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.8(+), 16.1$ $(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 16.2(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 18.1(-), 38.0(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 63.57(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 63.59(-)(\mathrm{d}, J=6$ $\mathrm{Hz}), 79.7(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 117.1(-), 137.1(+)(\mathrm{d}, J=4 \mathrm{~Hz}) ;$ HRMS $(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{P}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 237.1256, found 237.1255.

(R, E)-Diethyl (1-(trimethylsilyl)oct-1-en-3-yl) phosphate ((R)-10)

$(R)-10$
According to the literature procedure, ${ }^{\mathrm{S} 2} \mathrm{a}$ solution of $\mathbf{1 0 5}(982 \mathrm{mg}, 4.90 \mathrm{mmol}), \mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}(1.45 \mathrm{~mL}, 4.90$ $\mathrm{mmol})$ and L-(+)-DIPT ($1.24 \mathrm{~mL}, 5.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was cooled to $-40{ }^{\circ} \mathrm{C}$. A solution of $t-\mathrm{BuOOH}$ (3.50 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.10 \mathrm{~mL}, 7.35 \mathrm{mmol}$) was added to the solution. The reaction was conducted at $-20^{\circ} \mathrm{C}$ for 11 h and $\mathrm{Me}_{2} \mathrm{~S}(1.10 \mathrm{~mL}, 14.9 \mathrm{mmol})$ was added to quench excess $t-\mathrm{BuOOH}$. After 30 min at $-20^{\circ} \mathrm{C}$, tartaric acid $(10 \%$, 1.0 mL) and $\mathrm{NaF}(2.91 \mathrm{~g}, 69 \mathrm{mmol})$ were added. The mixture was stirred at rt for 30 min and Celite (4.0 g) was added. The mixture was filtered through a pad of Celite. The filtrate was mixed with $\mathrm{NaOH}(10 \%, 50 \mathrm{~mL})$ and the mixture was stirred at rt for 10 min . The organic solution was separated, and the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined extracts were dried over MgSO_{4} and concentrated to afford a mixture of $(R)-\mathbf{1 0 5}$ and 106. The mixture was subjected to chromatography on silica gel to afford $(R) \mathbf{- 1 0 5}(401 \mathrm{mg}, 41 \%$ yield) and 106 ($426 \mathrm{mg}, 40 \%$ yield). Alcohol $(R)-105$ was converted to the MTPA ester to determine 98% ee by ${ }^{1} \mathrm{H}$ NMR.

According to GP1 using the above alcohol $(R) \mathbf{- 1 0 5}(190 \mathrm{mg}, 0.949 \mathrm{mmol})$, diethyl chlorophosphate $(0.21 \mathrm{~mL}$,
$1.46 \mathrm{mmol})$ and N-methylimidazole $(0.15 \mathrm{~mL}, 1.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at rt for 1 h afforded phosphate $(R)-10\left(266 \mathrm{mg}, 83 \%\right.$ yield): $[\alpha]_{\mathrm{D}}{ }^{21}+8.5\left(c 0.98, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.74$ (hexane/EtOAc 1:2); IR (neat) 1262, 1250, 1037, $986 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.40(\mathrm{~m}, 12 \mathrm{H}), 1.52-1.74$ (m, 2 H), 3.99-4.12 (m, 4 H$), 4.64-4.73(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=18.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.4(+), 14.0(+), 16.2(+)(J=7 \mathrm{~Hz}), 22.5(-), 24.4(-), 31.5(-), 35.7(-)(\mathrm{d}, J=6 \mathrm{~Hz})$, $63.5(-)(\mathrm{d}, J=5 \mathrm{~Hz}), 81.5(+)(\mathrm{d}, J=4 \mathrm{~Hz}), 132.4(+), 144.1(+) ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{PSi}\left(\mathrm{M}^{+}\right)$ 336.1886, found 336.1888.

cis-4-((tert-Butyldimethylsilyl)oxy)cyclopent-2-en-1-yl diethyl phosphate (11)

A mixture of alcohol $\mathbf{1 0 7}^{\mathrm{S} 3}(1.05 \mathrm{~g}, 7.38 \mathrm{mmol}), \mathrm{TBSCl}(1.63 \mathrm{~g}, 10.8 \mathrm{mmol})$, imidazole $(1.01 \mathrm{~g}, 14.9 \mathrm{mmol})$ and a catalytic amount of DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for 12 h and diluted with brine. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated to afford TBS ether 108, which was used for the next reaction without further purification.

A mixture of the above ether 108 and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.07 \mathrm{~g}, 14.9 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was stirred at rt for 17 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to afford alcohol $109\left(1.34 \mathrm{~g}, 85 \%\right.$ yield over two steps). The ${ }^{1} \mathrm{H}$ NMR spectrum was consistent with that reported. ${ }^{\mathrm{S} 1, \mathrm{~S} 4, \mathrm{~S} 5}$

According to GP1 using alcohol 109 ($388 \mathrm{mg}, 1.81 \mathrm{mmol}$), diethyl chlorophosphate ($0.39 \mathrm{~mL}, 2.71 \mathrm{mmol}$) and N-methylimidazole ($0.26 \mathrm{~mL}, 3.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at rt for 11 h afforded phosphate $11(566 \mathrm{mg}, 89 \%$ yield): $R_{\mathrm{f}} 0.40$ (hexane/EtOAc 1:1); IR (neat) $1261,1036,1003 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.04$ (s, 3 H), $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.72(\mathrm{dt}, J=13.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dt}, J=13.4,7.2 \mathrm{~Hz}, 1$ H), 4.07 (quint., $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.59-4.68(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.88-5.96(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-4.7(+),-4.6(+), 16.1(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 18.1(-), 25.8(+), 42.4(-)(\mathrm{d}, J=4 \mathrm{~Hz}), 63.7(-)(\mathrm{d}, J=6 \mathrm{~Hz})$, $74.6(+), 79.9(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 131.8(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 139.0(+)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ APT NMR spectra were consistent with those reported. ${ }^{\text {S1 }}$
trans-4-((tert-Butyldimethylsilyl)oxy)cyclopent-2-en-1-yl diethyl phosphate (12)

To an ice-cold solution of alcohol $109(216 \mathrm{mg}, 1.01 \mathrm{mmol}), \mathrm{PPh}_{3}(537 \mathrm{mg}, 2.05 \mathrm{mmol})$ and $\mathrm{HCO}_{2} \mathrm{H}(0.076$ $\mathrm{mL}, 2.01 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added DIAD $(0.39 \mathrm{~mL}, 2.02 \mathrm{mmol})$ dropwise. The mixture was stirred at rt for 12 h and diluted with saturated NaHCO_{3}. The resulting mixture was extracted with EtOAc three times. The combined extracts were dried over MgSO_{4} and concentrated to give a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to afford formyl ester $\mathbf{1 1 0}$.

A mixture of the above ester 110 and $\mathrm{Et}_{3} \mathrm{~N}(0.014 \mathrm{~mL}, 0.100 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was stirred at rt for 6 h and concentrated to give a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to afford alcohol 111 ($206 \mathrm{mg}, 95 \%$ yield over two steps).

According to GP1 using alcohol $111(100.3 \mathrm{mg}, 0.468 \mathrm{mmol})$, diethyl chlorophosphate ($0.10 \mathrm{~mL}, 0.695 \mathrm{mmol}$) and N-methylimidazole ($0.066 \mathrm{~mL}, 0.837 \mathrm{mmol}$) at rt for 10 h afforded phosphate $12\left(138 \mathrm{mg}, 84 \%\right.$ yield): $R_{\mathrm{f}} 0.40$ (hexane/EtOAc 2:1); IR (neat) 1472, 1370, 1260, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 1.31(\mathrm{tm}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 2.01$ (dddd, $J=14.4,6.6,3.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=14.4,6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01-4.18(\mathrm{~m}, 4 \mathrm{H}), 5.02-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{dt}, J=5.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=5.5,1.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.7(+), 16.2(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 18.2(-), 25.9(+), 42.3(-)(\mathrm{d}, J=5 \mathrm{~Hz})$, $63.7(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 76.2(+), 82.3(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 131.8(+)(\mathrm{d}, J=4 \mathrm{~Hz}), 141.2(+) ; \mathrm{HRMS}(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{PSi}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$351.1757, found 351.1745.

Allyl diethyl phosphate (13)

According to GP1 using alcohol $112(0.10 \mathrm{~mL}, 1.47 \mathrm{mmol})$, diethyl chlorophosphate ($0.21 \mathrm{~mL}, 1.46 \mathrm{mmol}$) and N-methylimidazole ($0.13 \mathrm{~mL}, 1.65 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt for 12 h afforded phosphate $13(218 \mathrm{mg}, 76 \%$ yield): $R_{\mathrm{f}} 0.33$ (hexane/EtOAc 1:2); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30$ (d, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$), 4.08 (quint., $J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}$), 4.49 (dd, $J=7.8,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{dd}, J=17.1$, $10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.1(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 63.8(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 67.9(-)(\mathrm{d}, J=5$ $\mathrm{Hz}), 118.1(-), 132.6(+)(\mathrm{d}, J=7 \mathrm{~Hz})$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with those reported. ${ }^{\mathrm{S} 6}$

(E)-Diethyl hex-2-en-1-yl phosphate (14)

According to GP1 using alcohol $113(0.50 \mathrm{~mL}, 4.19 \mathrm{mmol})$, diethyl chlorophosphate ($0.91 \mathrm{~mL}, 6.29 \mathrm{mmol}$) and N-methylimidazole ($0.60 \mathrm{~mL}, 7.55 \mathrm{mmol}$) at rt for 13 h afforded phosphate $14\left(904 \mathrm{mg}, 91 \%\right.$ yield): $R_{\mathrm{f}} 0.31$ (hexane/EtOAc 1:1); IR (neat) $1459,1393,1265,1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3$ H), $1.34(\mathrm{dt}, J=1.0,7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.41(\mathrm{tq}, J=7.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{dt}, J=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=7.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{dtt}, J=15.3,6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dt}, J=$ $15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.5(+), 16.0(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 21.9(-), 34.1(-), 63.5(-)(\mathrm{d}, J$ $=6 \mathrm{~Hz}), 68.1(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 124.5(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 136.3(+)$; HRMS $(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{P}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$237.1256, found 237.1251. The ${ }^{1} \mathrm{H}$ NMR spectrum was consistent with that reported. ${ }^{\mathrm{S7}}$
(E)-3,7-Dimethylocta-2,6-dien-1-yl diethyl phosphate (15)

According to GP1 using geraniol (114) ($297 \mathrm{mg}, 1.93 \mathrm{mmol}$), diethyl chlorophosphate ($0.42 \mathrm{~mL}, 2.92 \mathrm{mmol}$) and N-methylimidazole ($0.27 \mathrm{~mL}, 3.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at rt for 12 h afforded phosphate $15(517 \mathrm{mg}$, 92% yield, $>97 \% E$ olefin by ${ }^{13} \mathrm{C}$ NMR): $R_{\mathrm{f}} 0.45$ (hexane/EtOAc 1:2); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34$ (dt, $J=$ $1.2,7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.01-2.17(\mathrm{~m}, 4 \mathrm{H}), 4.11(\mathrm{dq}, J=7.8,7.1 \mathrm{~Hz}, 4 \mathrm{H})$, $4.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{tm}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{tm}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.1$ $(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 16.4(+), 17.7(+), 25.7(+), 26.2(-), 39.5(-), 63.6(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 64.1(-)(\mathrm{d}, J=5 \mathrm{~Hz}), 118.9$ $(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 123.6(+), 131.9(-), 142.5(-)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with those reported, ${ }^{58}$ whereas the ${ }^{13} \mathrm{C}$ NMR spectrum in the lit. ${ }^{\mathrm{S} 9}$ is corrected.

(Z)-3,7-Dimethylocta-2,6-dien-1-yl diethyl phosphate (16)

115
16
According to GP1 using nerol (115) ($390 \mathrm{mg}, 2.53 \mathrm{mmol}$), diethyl chlorophosphate ($0.55 \mathrm{~mL}, 3.83 \mathrm{mmol}$) and N-methylimidazole ($0.40 \mathrm{~mL}, 5.07 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at rt for 7 h afforded phosphate $16(521 \mathrm{mg}, 71 \%$ yield, $>97 \% Z$ olefin by ${ }^{13} \mathrm{C}$ NMR): $R_{\mathrm{f}} 0.34$ (hexane/EtOAc $2: 1$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.33$ (dt, $J=1.0$, $7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.02-2.16(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{dq}, J=8.0,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.54(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.04-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.1(+)(\mathrm{d}, J=7 \mathrm{~Hz})$, $17.7(+), 23.5(+), 25.7(+), 26.6(-), 32.1(-), 63.6(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 63.8(-)(\mathrm{d}, J=5 \mathrm{~Hz}), 119.9(+)(\mathrm{d}, J=7 \mathrm{~Hz})$, $123.5(+), 132.3(-), 142.7(-)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with those reported, ${ }^{\text {S8 }}$ whereas the ${ }^{13} \mathrm{C}$ NMR spectrum in the lit. ${ }^{\mathrm{S} 10}$ is corrected.

5-((tert-Butyldimethylsilyl)oxy)pent-3-yn-2-yl diethyl phosphate (17)

According to GP1 using alcohol $116(238 \mathrm{mg}, 1.11 \mathrm{mmol})$, diethyl chlorophosphate ($0.24 \mathrm{~mL}, 1.67 \mathrm{mmol}$) and N-methylimidazole ($0.158 \mathrm{~mL}, 2.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt for 11 h afforded phosphate $17(361 \mathrm{mg}, 92 \%$ yield): $R_{\mathrm{f}} 0.33$ (hexane/EtOAc 2:1); IR (neat) $1261,1037,1003,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12$ (s, $6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{dt}, J=2.0,7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.57(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.08-4.20(\mathrm{~m}, 4 \mathrm{H}), 4.35(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.09-5.18(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.1(+), 16.2(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 18.3(-), 23.4(+)(\mathrm{d}, J=$ $5 \mathrm{~Hz}), 25.8(+), 51.7(-), 63.9(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 64.0(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 64.4(+)(\mathrm{d}, J=5 \mathrm{~Hz}), 83.0(-)(\mathrm{d}, J=6 \mathrm{~Hz})$, 84.6 (-); HRMS (FAB): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{PSi}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 351.1757$, found 351.1767.

(R)-Diethyl (4-(trimethylsilyl)but-3-yn-2-yl) phosphate ((R)-18)

To an ice-cold solution of alcohol $(R)-\mathbf{1 1 7}{ }^{\text {S11 }}\left(98 \%\right.$ ee by ${ }^{1} \mathrm{H}$ NMR of the MTPA ester (see part 4 of this supporting info.), $350 \mathrm{mg}, 4.99 \mathrm{mmol}$) in THF (20 mL) was added a solution of $\mathrm{MeLi}\left(1.16 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}, 9.50 \mathrm{~mL}\right.$, $11.0 \mathrm{mmol})$ dropwise. The solution was stirred at rt for 1 h and $\mathrm{TMSCl}(1.60 \mathrm{~mL}, 12.6 \mathrm{mmol})$ was added. The solution was stirred at rt for 1 h and 3 N HCl was carefully added until the mixture became acidic. After being stirred for 30 min at rt , the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed sequentially with saturated NaHCO_{3} and brine, dried over MgSO_{4} and concentrated to afford $(R) \mathbf{- 1 1 8}$, which was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. To the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution cooled to $0{ }^{\circ} \mathrm{C}$ were added N -methylimidazole ($0.71 \mathrm{~mL}, 8.99 \mathrm{mmol}$) and diethyl chlorophosphate $(1.08 \mathrm{~mL}, 7.51 \mathrm{mmol})$ and the solution was stirred at rt for 5 h . The remaining reagent was quenched by addition of $\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}(1.90 \mathrm{~mL}, 15.2 \mathrm{mmol})$ and the mixture was stirred at rt for 30 min before addition of saturated NaHCO_{3}. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated to leave an oil, which was purified by chromatography on silica gel (hexane/EtOAc) to afford $(R)-18\left(1.05 \mathrm{~g}, 76 \%\right.$ yield): $[\alpha]_{\mathrm{D}}{ }^{21}+51\left(c 1.03, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}}$ 0.31 (hexane/EtOAc 1:1); IR (neat) 1394, 1034, 989, $847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.13(\mathrm{~s}, 9 \mathrm{H}), 1.31$ $(\mathrm{dt}, J=1.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{dt}, J=1.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.02-4.18(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{dt}, J=$ $7.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.3(+), 16.1(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 23.4(+), 63.8(-)(\mathrm{d}, J=6.5 \mathrm{~Hz})$, $63.9(-)(\mathrm{d}, J=6.5 \mathrm{~Hz}), 64.6(+)(\mathrm{d}, J=5 \mathrm{~Hz}), 90.5(-), 103.4(-)(\mathrm{d}, J=5 \mathrm{~Hz})$; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{PSi}\left(\mathrm{M}^{+}\right)$278.1103, found 278.1098.

(R)-Diethyl (1-(trimethylsilyl)oct-1-yn-3-yl) phosphate ((R)-19)

A mixture of alcohol 119 ($861 \mathrm{mg}, 4.34 \mathrm{mmol}$), $\mathrm{PCC}(1.40 \mathrm{~g}, 6.50 \mathrm{mmol})$, Celite (2.10 g), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred vigorously at rt for 1 h and diluted with hexane. The resulting mixture was filtered through a pad of Celite and the filtrate was concentrated to leave an oil, which was purified by chromatography on silica gel to afford ketone $120(830 \mathrm{mg}, 97 \%$ yield). $\operatorname{RuCl}[(1 R, 2 R)-\mathrm{TsDPEN}](p-c y m e n e)(269 \mathrm{mg}, 0.423 \mathrm{mmol})$ was neutralized with KOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the mixture was washed with $\mathrm{H}_{2} \mathrm{O}$, dried over CaH_{2} and concentrated under vacuum to afford a residue, which was transferred with $i-\mathrm{PrOH}(6 \mathrm{~mL})$ to a solution of ketone $\mathbf{1 2 0}(830 \mathrm{mg}, 4.23$ $\mathrm{mmol})$ in $i-\mathrm{PrOH}(15 \mathrm{~mL})$. The solution was stirred at rt for 11 h and concentrated. The residue was purified by chromatography on silica gel (hexane/EtOAc) to give alcohol (R)-119 ($806 \mathrm{mg}, 96 \%$ yield), which was 93% ee as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the derived (S) - and (R)-MTPA esters: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.49$ ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$) (major (S)-MTPA ester); $\delta 5.54(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$) (minor (R)-MTPA ester).

According to GP1 using alcohol $(R)-\mathbf{1 1 9}(93 \%$ ee, $188 \mathrm{mg}, 0.949 \mathrm{mmol})$, diethyl chlorophosphate $(0.21 \mathrm{~mL}$, $1.46 \mathrm{mmol})$ and N-methylimidazole ($0.15 \mathrm{~mL}, 1.90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at rt for 2 h afforded a mixture of (R)-19 and remaining chlorophosphate, to which $\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ was added. After 30 min at rt , the mixture was diluted with saturated NaHCO_{3}. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by chromatography on silica
gel (hexane/EtOAc) to afford phosphate $(R)-19\left(289 \mathrm{mg}, 91 \%\right.$ yield): $[\alpha]_{\mathrm{D}}{ }^{21}+29\left(c 0.94, \mathrm{CHCl}_{3}\right): R_{\mathrm{f}} 0.33$ (hexane/EtOAc 3:1); IR (neat) 2179, 1252, 1035, $846 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.54(\mathrm{~m}, 12 \mathrm{H}), 1.71-1.90(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.22(\mathrm{~m}, 4 \mathrm{H}), 4.96(\mathrm{dt}, J=7.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.3(+), 14.0(+), 16.1(+)(\mathrm{d}, J=7 \mathrm{~Hz}), 22.5(-), 24.4(-), 31.2(-), 36.5(-)(\mathrm{d}, J=6$ $\mathrm{Hz}), 63.77(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 63.85(-)(\mathrm{d}, J=6 \mathrm{~Hz}), 68.5(+)(\mathrm{d}, J=6 \mathrm{~Hz}), 91.4(-), 102.7(-)(\mathrm{d}, J=4 \mathrm{~Hz}) ;$ HRMS (EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{PSi}\left(\mathrm{M}^{+}\right) 334.1729$, found 334.1730.

Reaction of 1e with BuLi

To an ice-cold solution of $\mathbf{1 e}(74 \mathrm{mg}, 0.438 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added $\mathrm{BuLi}(1.55 \mathrm{M}$ in hexane, 0.28 mL , 0.434 mmol) dropwise. The solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min and $\mathrm{H}_{2} \mathrm{O}$ was added to the solution. The resulting mixture was extracted with hexane twice. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated to afford a residue, which was purified by chromatography on silica gel (hexane/EtOAc) to afford 29 ($22 \mathrm{mg}, 22 \%$ yield): $R_{\mathrm{f}} 0.40$ (hexane/EtOAc 4:1); IR (neat) $1599,733,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.37$ (sextet, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.62-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.93(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.36(\mathrm{~m}, 5 \mathrm{H}), 8.40(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0(+), 22.6(-), 32.1(-), 38.1(-), 41.3(-), 121.5(+), 123.2(+), 126.6(+), 128.7(+), 129.0(+)$, $139.2(-), 149.2(+), 150.2(-), 162.6(-)$; HRMS (EI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}\left(\mathrm{M}^{+}\right) 225.1517$, found 225.1517 .

GP2: General Procedures for Substitution of Phosphates with Diarylmethanes using BuLi

To a solution of diarylmethane 1 (3.3 equiv) in THF was added a solution of BuLi (3 equiv) in hexane dropwise. The solution was stirred at $0^{\circ} \mathrm{C}-\mathrm{rt}$ for 15 min and cooled to $-15^{\circ} \mathrm{C}$. Phosphate (1 equiv) in THF was added to the solution dropwise. The solution was stirred at $-15^{\circ} \mathrm{C}$ for a specific period of time (usually 15 min) and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc several times. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated. The residual oil was purified by chromatography on silica gel to afford the corresponding product.

GP3: General Procedures for Substitution of Phosphates with Diarylmethanes using LDA

To an ice-cold solution of $i-\mathrm{Pr}_{2} \mathrm{NH}$ (3.3 equiv) in THF was added a solution of BuLi (3 equiv) in hexane dropwise. The solution was stirred at $0^{\circ} \mathrm{C}$ for $30-60 \mathrm{~min}$ and $4-\mathrm{PyCH}_{2} \mathrm{Ph}(\mathbf{1 e})$ or $2-\mathrm{PyCH}_{2} \mathrm{Ph}(\mathbf{1 f})(3.2$ equiv) in THF was added. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and cooled to $-15^{\circ} \mathrm{C}$. Phosphate (1 equiv) in THF was added to the solution dropwise. The solution was stirred at $-15^{\circ} \mathrm{C}$ for a specific period of time (usually 15 min) and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted and purified as mentioned above.

Allylic Products

(S,E)-tert-Butyldimethyl((4-methyl-5,5-diphenylpent-2-en-1-yl)oxy)silane ((S)-4)

According to GP2 using phosphate (R)-3 (98% ee, $171 \mathrm{mg}, 0.485 \mathrm{mmol}$) in THF (2.5 mL), diphenylmethane (1a) $(264 \mathrm{mg}, 1.57 \mathrm{mmol})$ and $\mathrm{BuLi}(1.63 \mathrm{M}$ in hexane, $0.89 \mathrm{~mL}, 1.45 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ at $-15{ }^{\circ} \mathrm{C}$ for 15 min afforded (S)-4 (155 mg, 87\% yield, 97% rs by ${ }^{1} \mathrm{H}$ NMR): $[\alpha]_{\mathrm{D}}{ }^{22}-5.0\left(c 0.83, \mathrm{CHCl}_{3}\right) ; R_{\mathrm{f}} 0.85$ (hexane/EtOAc 1:1); IR (neat) $1598,1451,1378,1254,1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.07$ (s, 3 H), -0.06 (s, 3 H), $0.83(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.07(\mathrm{ddq}, J=10.6,5.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J$ $=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{dt}, J=15.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.30(\mathrm{~m}, 10 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2(+), 18.4(-), 19.6(+), 26.0(+), 39.9(+), 58.9(+), 63.9(-), 126.0(+), 126.1(+), 128.2$ $(+), 128.3(+), 128.47(+), 128.51(+), 129.0(+), 134.7(+), 144.0(-), 144.3(-)$; HRMS (FAB): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{OSi}\left[(\mathrm{M}-\mathrm{H})^{+}\right] 365.2301$, found 365.2305 .

Determination of enantiomeric purity of (S)-4.

(S)-121

To a solution of above $(S)-4(4.9 \mathrm{mg}, 0.013 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added TBAF $(1.0 \mathrm{M}$ in THF, 0.13 mL , 0.13 mmol). The solution was stirred at rt for 15 min and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc twice. The combined extracts were dried over MgSO_{4} and concentrated. The residual oil was purified by chromatography on silica gel (hexane/EtOAc) to afford alcohol (S) -121 ($3.3 \mathrm{mg}, 98 \%$ yield): 96.6\% ee by chiral HPLC analysis (Chiralcel AS-H, hexane $/ i-\mathrm{PrOH}=99 / 1,0.5 \mathrm{~mL} / \mathrm{min}, 33{ }^{\circ} \mathrm{C}, t_{\mathrm{R}}(\mathrm{min})=36.0$ (minor (R)-isomer), 41.2 (major (S)-isomer)); $R_{\mathrm{f}} 0.13$ (hexane/EtOAc 9:1); IR (neat) 3386, 1598, 1493, 1450, 972, 703 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.00-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-4.02(\mathrm{~m}, 2 \mathrm{H}), 5.46-5.63(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.32(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.7$ $(+), 40.4(+), 58.8(+), 63.8(-), 126.2(+), 126.3(+), 128.2(+), 128.4(+), 128.5(+), 128.6(+), 128.9(+), 137.5$ $(+), 143.9(-), 144.1(-) ;$ HRMS $(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ONa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$275.1412, found 275.1406.

Determination of the absolute configuration of (S)-4.

To a suspension of above $(S)-4(132 \mathrm{mg}, 0.361 \mathrm{mmol})$ and $\mathrm{NaIO}_{4}(1.23 \mathrm{~g}, 5.77 \mathrm{mmol})$ in $\mathrm{MeCN}(4 \mathrm{~mL}), \mathrm{CCl}_{4}$ $(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$ was added a catalytic amount of $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$. The mixture was stirred at rt for 12 h and diluted with $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined extracts were dried over MgSO_{4} and concentrated. The residual oil was purified by chromatography on silica gel (hexane/EtOAc) to afford acid $(R)-5(54 \mathrm{mg}, 62 \%$ yield $)$. The (R)-configuration of the acid was determined by comparison of $[\alpha]_{\mathrm{D}}{ }^{21}$ $+57\left(c 1.25, \mathrm{CHCl}_{3}\right)$ with the lit. ${ }^{\text {S12 }}$ values for the (S)-isomer $\left([\alpha]_{\mathrm{D}}{ }^{26.5}-52.6 \pm 1.7\left(c \quad 1.578, \mathrm{CHCl}_{3}\right)\right)$. Other characterization data of $(R)-5: R_{\mathrm{f}} 0.13$ (hexane/EtOAc 4:1); IR (neat) $3054,1710,1265,740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.31(\mathrm{dq}, J=11.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.33(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.2(+), 44.3(+), 54.7(+), 126.6(+), 126.7(+), 127.6(+), 128.2(+), 128.6$ $(+), 128.8(+), 142.1(-), 142.9(-), 181.4(-)$; HRMS (FAB): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}\left[(\mathrm{M}-\mathrm{H})^{+}\right]$239.1072, found 239.1072. The ${ }^{1} \mathrm{H}$ NMR spectrum was consistent with that reported. ${ }^{\text {S13 }}$

(R,E)-tert-Butyldimethyl((4-methyl-5,5-diphenylpent-2-en-1-yl)oxy)silane ((R)-4)

To a solution of $\mathbf{1 a}(59 \mathrm{mg}, 0.35 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added $\mathrm{BuLi}(1.63 \mathrm{M}$ in hexane, $0.20 \mathrm{~mL}, 0.33$ $\mathrm{mmol})$. The solution was stirred at rt for 15 min and cooled to $-15^{\circ} \mathrm{C}$. A solution of $(R)-2(29 \mathrm{mg}, 0.092 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{mg}, 0.0052 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added to the solution. The solution was stirred at $-15^{\circ} \mathrm{C}$ for 1 h and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with EtOAc three times. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated. The residual oil was purified by chromatography on silica gel (hexane/EtOAc) to afford a mixture of $(R)-4$ and the regioisomer ($28 \mathrm{mg}, 83 \%$ yield. $>99 \%$ rs by ${ }^{1} \mathrm{H}$ NMR). The ${ }^{1} \mathrm{H}$ NMR spectrum of $(R)-4$ was consistent with that of $(S)-4$ obtained above. The product ($5.1 \mathrm{mg}, 0.014 \mathrm{mmol}$) in THF (1 mL) was added TBAF (1.0 M in THF, $0.14 \mathrm{~mL}, 0.14 \mathrm{mmol}$), and the mixture was stirred at rt for 15 min to obtain the alcohol ($3.1 \mathrm{mg}, 88 \%$ yield), which showed 91.6% ee by chiral HPLC under the conditions mentioned above.

(E)-((4-(9H-Xanthen-9-yl)pent-2-en-1-yl)oxy)(tert-butyl)dimethylsilane (20)

According to GP2 using phosphate $3(54 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL}), 9 H$-xanthene (1b) ($92 \mathrm{mg}, 0.49$ $\mathrm{mmol})$ and $\mathrm{BuLi}(1.55 \mathrm{M}$ in hexane, $0.30 \mathrm{~mL}, 0.46 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded a
mixture of $\mathbf{2 0}$ and the regioisomer (46 mg , 79% yield, 87% rs by ${ }^{1} \mathrm{H}$ NMR). The major product 20: $R_{\mathrm{f}} 0.90$ (hexane/EtOAc 1:1); IR (neat) $1577,1478,1458,1255,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.05$ (s, 6 H), $0.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 2.34-2.45(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.19(\mathrm{dt}, J=15.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-7.18(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-5.12(+),-5.10(+), 15.7(+), 18.5(-), 26.1(+), 45.5(+), 46.0(+), 63.8(-)$, nine signals $(+)$ for 10 carbons at $116.18,116.23,122.7,122.9,127.6,129.3,129.5,129.7$ and 132.7, $123.3(-), 124.2(-), 152.9(-), 153.1(-)$; HRMS (FAB): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 403.2069$; found 403.2073. Selected signals for the regioisomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.77(\mathrm{dd}, J=15.1,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dq}, J=15.1,6.3 \mathrm{~Hz}, 1 \mathrm{H})$.
(E)-((4-(9H-Fluoren-9-yl)pent-2-en-1-yl)oxy)(tert-butyl)dimethylsilane (21)

According to GP2 using phosphate $3(53 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (0.7 mL), $9 H$-fluorene (1c) ($83 \mathrm{mg}, 0.48$ $\mathrm{mmol})$ and $\mathrm{BuLi}(1.55 \mathrm{M}$ in hexane, $0.29 \mathrm{~mL}, 0.45 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded a mixture of 21 and the regioisomer ($45 \mathrm{mg}, 81 \%$ yield, $85 \% \mathrm{rs}$ by ${ }^{1} \mathrm{H} N \mathrm{NR}$). The major product 21: $R_{\mathrm{f}} 0.87$ and 0.70 (hexane/EtOAc 1:1 and 20:1, respectively); IR (neat) $1717,1611,1450,1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-0.04(\mathrm{~s}, 6 \mathrm{H}), 0.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 3.02-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ $(\mathrm{d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dt}, J=15.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=15.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1(+), 14.7(+), 18.5(-), 26.0(+), 39.4$ $(+), 52.7(+), 63.9(-)$, eight signals $(+)$ for 10 carbons at $119.7,124.5,125.3,126.6,126.8,127.1,129.1$ and 134.2, $141.6(-), 141.8(-), 145.3(-), 146.2(+)$; HRMS $(\mathrm{FAB}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{OSiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 387.2120$, found 387.2123. Selected signals for the regioisomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.78$ (dd, J $=15.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$.

(E)-tert-Butyldimethyl((4-methyl-5,5-di-p-tolylpent-2-en-1-yl)oxy)silane (22)

According to GP2 using phosphate $3(53 \mathrm{mg}, 0.15 \mathrm{mmol})$ in THF (0.7 mL), di-p-tolylmethane (1d) (98 mg , $0.48 \mathrm{mmol})$ and $\operatorname{BuLi}(1.60 \mathrm{M}$ in hexane, $0.28 \mathrm{~mL}, 0.45 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded a mixture of 22 and the regioisomer ($57 \mathrm{mg}, 95 \%$ yield, 92% rs by ${ }^{1} \mathrm{H}$ NMR). The major product $22: R_{\mathrm{f}} 0.90$ (hexane/EtOAc 1:1); IR (neat) $1511,1461,1254,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.07$ (s, 3 H), -0.06 (s, $3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.96-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.99(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.41-5.55(\mathrm{~m}, 2 \mathrm{H}), 6.97-7.21(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2(+)$, $18.4(-), 19.6(+), 21.0(+), 26.0(+), 39.9(+), 58.1(+), 64.1(-), 127.9$ and $128.2(+), 128.8(+), 129.0$ and 129.2 $(+), 135.1(+), 135.3$ and $135.5(-), 141.3$ and $141.6(-) ;$ HRMS (FAB): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{OSiNa}\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$ 417.2590, found 417.2579. Selected signals for the regioisomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.83-2.95(\mathrm{~m}, 1 \mathrm{H})$, $5.26(\mathrm{dd}, J=15.4,8.7 \mathrm{~Hz}, 1 \mathrm{H})$.

(E)-tert-Butyldimethyl((4-methyl-5,5,5-triphenylpent-2-en-1-yl)oxy)silane (122)

According to GP2 using phosphate $\mathbf{3}(41 \mathrm{mg}, 0.116 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{CH}(\mathbf{1 z})(92 \mathrm{mg}, 0.377 \mathrm{mmol})$ and $\operatorname{BuLi}(1.61 \mathrm{M}$ in hexane, $0.22 \mathrm{~mL}, 0.354 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded a mixture of $\mathbf{1 2 2}$ and the regioisomer ($32 \mathrm{mg}, 61 \%$ yield, 84% rs by ${ }^{1} \mathrm{H} N \mathrm{NR}$). The major product 122: $R_{\mathrm{f}} 0.85$ (hexane/EtOAc 2:1); IR (neat) $1597,1494,1254,836,704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.07(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9$ H), $0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.01(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.14$ (quint., $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dt}, J=15.6,4.5 \mathrm{~Hz}, 1$ H), $5.64(\mathrm{dd}, J=15.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.42(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.2(+), 17.2(+), 18.4(-)$,
$26.0(+), 39.0(+), 61.2(-), 64.0(-), 125.6(+), 127.4(+), 130.1(+)(\mathrm{br} \mathrm{s}), 130.3(+), 132.5(+), 145.7(\mathrm{br} \mathrm{s})$; HRMS (FAB): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{OSi}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 443.2770$; found 443.2770 . Selected signals for the regioisomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.11(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.58(\mathrm{dd}, J=6.3,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 5.14$ (ddq, $J=15.0,8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dq}, J=15.0,6.3 \mathrm{~Hz}, 1 \mathrm{H})$.
(E)-4-(5-((tert-Butyldimethylsilyl)oxy)-2-methyl-1-phenylpent-3-en-1-yl)pyridine (23)

According to GP3 using phosphate $\mathbf{3}(47 \mathrm{mg}, 0.13 \mathrm{mmol})$ in THF (0.5 mL), 4-benzylpyridine (1e) ($73 \mathrm{mg}, 0.43$ $\mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NH}(0.062 \mathrm{~mL}, 0.445 \mathrm{mmol})$ and $\operatorname{BuLi}(1.55 \mathrm{M}$ in hexane, $0.26 \mathrm{~mL}, 0.403 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 8 h afforded 23 ($37 \mathrm{mg}, 78 \%$ yield, 92% rs by ${ }^{1} \mathrm{H}$ NMR), which was a mixture of the diastereomers ($51: 49$ by ${ }^{1} \mathrm{H}$ NMR): $R_{\mathrm{f}} 0.52$ (hexane/EtOAc 3:1); IR (neat) $1597,1416,1254,1070,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.071$ and $-0.055(2 \mathrm{~s}, 3 \mathrm{H}),-0.062$ and $-0.051(2 \mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \times 0.51 \mathrm{H}), 0.83(\mathrm{~s}, 9 \times 0.49 \mathrm{H})$, 0.97 and $0.98(2 \mathrm{~d}, J=6.6$ and $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.00-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.59$ and $3.60(2 \mathrm{~d}, J=10.8$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.94-4.04 (m, 2 H), 5.42-5.54 (m, 2 H), 7.12-7.32 (m, 7 H), 8.42-8.50 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $5.2(+), 18.4(-), 19.4$ and $19.5(+), 25.9$ and $26.0(+), 39.4$ and $39.7(+), 58.3(+), 63.6$ and $63.7(-), 123.6$ and $123.9(+), 126.7$ and $126.8(+), 128.2$ and $128.5(+), 128.6$ and $128.8(+), 129.7$ and $129.9(+), 133.5$ and $133.6(+)$, 142.1 and $142.4(-), 149.8$ and $150.0(+), 152.9$ and $153.1(-) ; H R M S(F A B) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NOSi}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$ 368.2410 , found 368.2405 .

(E)-2-(5-((tert-Butyldimethylsilyl)oxy)-2-methyl-1-phenylpent-3-en-1-yl)pyridine (24)

According to GP3 using phosphate $\mathbf{3}$ ($49 \mathrm{mg}, 0.139 \mathrm{mmol}$) in THF (0.5 mL), 2-benzylpyridine ($\mathbf{1 f}$) (76 mg , $0.45 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NH}(0.061 \mathrm{~mL}, 0.435 \mathrm{mmol})$ and $\mathrm{BuLi}(1.55 \mathrm{M}$ in hexane, $0.27 \mathrm{~mL}, 0.42 \mathrm{mmol})$ in THF (1.5 mL) at $-15{ }^{\circ} \mathrm{C}$ for 15 min afforded $24\left(43 \mathrm{mg}, 84 \%\right.$ yield, 94% rs by ${ }^{1} \mathrm{H}$ NMR), which was a mixture of the diastereomers ($51: 49$ by ${ }^{1} \mathrm{H}$ NMR): $R_{\mathrm{f}} 0.72$ (hexane/EtOAc 3:1); IR (neat) $1588,1471,1433,1254 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.07(\mathrm{~s}, 6 \times 0.51 \mathrm{H}),-0.06(\mathrm{~s}, 6 \times 0.49 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.98(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.38(\mathrm{~m}$, $1 \mathrm{H}), 3.75(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-4.00(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.56(\mathrm{~m}, 2 \mathrm{H}), 6.98-7.57(\mathrm{~m}, 8 \mathrm{H}), 8.52$ and $8.57(2 \mathrm{~d}, J$ $=4.5$ and $4.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.2$ and $-5.1(+), 18.40$ and $18.42(-)$, 19.1 and $19.3(+)$, $26.0(+), 40.06$ and $40.11(+), 60.8$ and $60.9(+), 63.89$ and $63.93(-), 121.2$ and $121.3(+), 123.49$ and $123.50(+)$, 126.3 and $126.5(+)$, six signals $(+)$ for 3 carbons at $128.3,128.46(+), 128.52,128.7,129.06$, and $129.14,134.4$ and $134.6(+), 136.2$ and $136.4(+), 142,69$ and $142.73(-), 149.3$ and $149.5(+), 163.1$ and $163.2(-)$; HRMS (FAB): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \operatorname{NOSi}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 368.2410$, found 368.2411.
(E)-((4-Benzhydrylhex-2-en-1-yl)oxy)(tert-butyl)dimethylsilane (25)

According to GP2 using phosphate $7(47 \mathrm{mg}, 0.13 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL}), \mathbf{1 a}(72 \mathrm{mg}, 0.41 \mathrm{mmol})$ and BuLi (1.63 M in hexane, $0.24 \mathrm{~mL}, 0.39 \mathrm{mmol}$) in THF $(0.7 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded $25(39 \mathrm{mg}, 80 \%$ yield, 91% rs by ${ }^{1} \mathrm{H}$ NMR): $R_{\mathrm{f}} 0.90$ (hexane/EtOAc 1:1); IR (neat) $1599,1494,1451,1255,1075 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.082(\mathrm{~s}, 3 \mathrm{H}),-0.077(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 1.04-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.39-$ $1.51(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.84(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=5.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{ddt}, J=15.4$, $8.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dt}, J=15.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.31(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.21(+)$, $5.19(+), 11.7(+), 18.4(-), 26.0(+), 26.1(-), 47.9(+), 57.2(+), 63.8(-), 125.9(+), 126.1(+), 128.25(+), 128.26$ $(+), 128.5(+), 128.6(+), 131.3(+), 132.6(+), 144.1(-), 144.4(-)$; HRMS (FAB): m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{OSiNa}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 403.2433$, found 403.2434.

(E)-((2-Benzhydryl-5-methylhex-3-en-1-yl)oxy)(tert-butyl)dimethylsilane (26)

According to GP2 using phosphate $8(28 \mathrm{mg}, 0.0746 \mathrm{mmol})$ in THF (0.5 mL), 1a ($41 \mathrm{mg}, 0.241 \mathrm{mmol}$) and $\operatorname{BuLi}(1.60 \mathrm{M}$ in hexane, $0.14 \mathrm{~mL}, 0.224 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 1 h afforded a mixture of 26 and the regioisomer ($23 \mathrm{mg}, 77 \%$ yield, 81% rs by ${ }^{1} \mathrm{H}$ NMR). The major product 26: $R_{\mathrm{f}} 0.85$ and 0.51 (hexane/EtOAc 1:1 and 20:1, respectively); IR (neat) $1470,1253,1106,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.05(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 2.08(\mathrm{~d}$ of sext, $J=6.6,6.7 \mathrm{~Hz}, 1$ H), 2.85-2.96 (m, 1 H), 3.42 (dd, $J=9.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (dd, $J=9.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H})$, $5.18(\mathrm{dd}, J=15.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=15.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.43(+),-5.35(+), 18.4(-), 22.4(+), 22.5(+), 26.0(+), 31.2(+), 49.0(+), 52.5(+), 65.2(-), 125.8(+)$, $126.1(+), 127.5(+), 128.0(+), 128.38(+), 128.43(+), 129.2(+), 140.0(+), 143.7(-), 144.1(-)$; HRMS (FAB): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{OSi}\left[(\mathrm{M}-\mathrm{H})^{+}\right] 393.2614$, found 393.2621. Selected signals for the minor product: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.10(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}), 5.64(\mathrm{dd}, J=15.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dt}, J=15.3,4.3 \mathrm{~Hz}, 1$ H).

(2-Ethylbut-3-ene-1,1-diyl)dibenzene (27)

The general procedure GP2 was applied to this reaction except for reaction temperature of $-78^{\circ} \mathrm{C}$. Briefly, phosphate $9(24 \mathrm{mg}, 0.10 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ was added to a mixture of $\mathbf{1 a}(56 \mathrm{mg}, 0.33 \mathrm{mmol})$ and BuLi (1.60 M in hexane, $0.20 \mathrm{~mL}, 0.32 \mathrm{mmol}$) in THF $(4.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 15 min to afford a mixture of 27 and the regioisomer $34\left(20 \mathrm{mg}, 81 \%\right.$ yield, 78% rs by $\left.{ }^{1} \mathrm{H} N M R\right)$. The major product $27: R_{\mathrm{f}}$ 0.87 (hexane/EtOAc 1:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.06-1.46(m, 4 H), 2.83-2.93 $(\mathrm{m}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{dd}, J=16.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=10.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{ddd}, J$ $=16.9,10.5,9.1 \mathrm{~Hz}, 1 \mathrm{H})$. Selected signals for the regioisomer 34 : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.74(\mathrm{dd}, J=7.8$, $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4}$ was consistent with that of the same compound obtained from phosphate 14 and 1a (vide infra).
($\boldsymbol{R}, \boldsymbol{E}$)-(3-Benzhydryloct-1-en-1-yl)trimethylsilane ((R)-28)

According to GP2 using phosphate $(R) \mathbf{- 1 0}(98 \%$ ee, $46 \mathrm{mg}, 0.137 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$, $\mathbf{1 a}(73 \mathrm{mg}, 0.435$ $\mathrm{mmol})$ and $\mathrm{BuLi}(1.60 \mathrm{M}$ in hexane, $0.26 \mathrm{~mL}, 0.416 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded $(R)-\mathbf{2 8}$ ($38 \mathrm{mg}, 80 \%$ yield, $>99 \%$ rs by ${ }^{1} \mathrm{H}$ NMR): 96% ee as determined by HPLC analysis (Chiralcel OJ-H, hexane $/ i-\operatorname{PrOH}=99.5 / 0.5,0.1 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}, t_{\mathrm{R}}(\mathrm{min})=54.2($ major (R)-isomer $)$), 61.9 (minor (S)-isomer $) ;[\alpha]_{\mathrm{D}}{ }^{21}$ $-50\left(c 0.86, \mathrm{CHCl}_{3}\right.$); $R_{\mathrm{f}} 0.81$ (hexane/EtOAc 3:1); IR (neat) $1616,1495,1451,1247,868,838,701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.15(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.74(\mathrm{~m}, 8 \mathrm{H}), 3.06-3.17(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=18.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.61(\mathrm{~m}, 10 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.3(+), 14.1(+), 22.6(-), 26.9(-), 31.8(-), 32.7(-), 51.1(+), 57.5(+), 125.8(+), 126.1(+)$, $128.0(+), 128.4(+), 128.5(+), 128.7(+), 131.8(+), 144.1(-), 144.2(-), 149.2(+) ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{Si}\left(\mathrm{M}^{+}\right) 350.2430$, found 350.2429 .
trans-((4-Benzhydrylcyclopent-2-en-1-yl)oxy)(tert-butyl)dimethylsilane (30a)

According to GP2 using phosphate $11(35 \mathrm{mg}, 0.100 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL}), \mathbf{1 a}(60 \mathrm{mg}, 0.36 \mathrm{mmol})$ and
$\operatorname{BuLi}(1.63 \mathrm{M}$ in hexane, $0.19 \mathrm{~mL}, 0.31 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded a mixture of $\mathbf{3 0 a}$, cis isomer 31a and the regioisomer 32a in a ratio of $87: 1: 12$ by ${ }^{1} \mathrm{H}$ NMR ($26 \mathrm{mg}, 71 \%$ yield). The major product 30a: $R_{\mathrm{f}} 0.92$ (hexane/EtOAc 1:1); IR (neat) $1716,1495,1450,1254,1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.03(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.77-1.91(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.90(\mathrm{~m}, 1 \mathrm{H})$, $5.67(\mathrm{dm}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.31(\mathrm{~m}, 10 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $4.5(+), 18.4(-), 26.1(+), 40.0(-), 48.8(+), 58.2(+), 77.4(+), 126.27(+), 126.28(+), 128.07(+), 128.15(+)$, $128.51(+), 128.53(+), 134.1(+), 137.4(+), 144.3(-), 144.6(-)$; HRMS (FAB): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{OSiNa}$ $\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 387.2120$, found 387.2120 .
trans-4-((4-((tert-Butyldimethylsilyl)oxy)cyclopent-2-en-1-yl)(phenyl)methyl)pyridine (30e)

According to GP3 using phosphate $11(49 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL}), \mathbf{1 e}(76 \mathrm{mg}, 0.45 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NH}$ $(0.061 \mathrm{~mL}, 0.44 \mathrm{mmol})$ and $\operatorname{BuLi}(1.55 \mathrm{M}$ in hexane, $0.27 \mathrm{~mL}, 0.42 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded a mixture of $\mathbf{3 0 e}$, cis isomer 31e and the regioisomer 32e in a ratio of 91:4:5 by ${ }^{1} \mathrm{H}$ NMR $(76 \mathrm{mg}, 86 \%$ yield). The major product 30e: diastereomeric ratio $53: 47$ by ${ }^{1} \mathrm{H}$ NMR; $R_{\mathrm{f}} 0.65$ and 0.70 (hexane/EtOAc 1:1); IR (neat) 1593, 1254, 1068, $1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.034$ and $0.038(2 \mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{x} 0.47 \mathrm{H})$, $0.87(\mathrm{~s}, 9 \mathrm{x} 0.53 \mathrm{H}), 1.71-1.91(\mathrm{~m}, 2 \mathrm{H}), 3.51$ and $3.52(2 \mathrm{~d}, J=11.2$ and $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.84(\mathrm{~m}, 1 \mathrm{H}), 4.81-$ $4.88(\mathrm{~m}, 1 \mathrm{H}), 5.63$ and $5.64(2 \mathrm{dm}, J=6.3$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.79(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.34(\mathrm{~m}, 7 \mathrm{H}), 8.49$ and 8.50 $(2 \mathrm{~d}, J=6.2$ and $6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.55$ and $-4.53(+), 18.37$ and $18.38(-), 26.0(+)$, 39.8 and $39.9(-), 48.2(+), 57.49$ and $57.52(+), 123.4$ and $123.5(+), 126.9(+), 128.08$ and $128.11(+), 128.8(+)$, 134.8 and $135.0(+), 136.3$ and $136.5(+), 142.4$ and $142.7(-), 149.96$ and $150.01(+), 153.0$ and $153.2(-)$; HRMS (FAB): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \operatorname{NOSi}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 366.2253$, found 366.2258.

(((1R,4S)-4-Benzhydrylcyclopent-2-en-1-yl)oxy)(tert-butyl)dimethylsilane (31a)

According to GP2 using phosphate 12 ($48 \mathrm{mg}, 0.137 \mathrm{mmol}$) in THF (1 mL), 1a ($75 \mathrm{mg}, 0.446 \mathrm{mmol}$) and BuLi (1.55 M in hexane, $0.27 \mathrm{~mL}, 0.42 \mathrm{mmol}$) in THF $(1 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 1 h afforded a mixture of $\mathbf{3 1 a}$, trans isomer 30a and the regioisomer 32a in a ratio of $97: 2: 1$ by ${ }^{1} \mathrm{H}$ NMR ($35 \mathrm{mg}, 70 \%$ yield). The major product 31a: $R_{\mathrm{f}} 0.92$ (hexane/EtOAc 1:1); IR (neat) 1252, 1089, 836, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(\mathrm{~s}, 3 \mathrm{H}$), $0.05(\mathrm{~s}, 3$ H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{dt}, J=13.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dt}, J=13.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.86(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=5.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=5.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.32(\mathrm{~m}, 10$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.6(+),-4.5(+), 18.3(-), 26.0(+), 40.6(-), 48.7(+), 58.8(+), 77.5(+), 126.2$ $(+), 126.06(+), 128.11(+), 128.51(+), 128.55(+), 134.9(+), 135.8(+), 144.2(-), 144.4(-) ;$ HRMS (FAB): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{OSi}\left[(\mathrm{M}-\mathrm{H})^{+}\right] 363.2144$, found 363.2147 .
cis-4-((4-((tert-Butyldimethylsilyl)oxy)cyclopent-2-en-1-yl)(phenyl)methyl)pyridine (31e)

Method 2

Method 1: According to GP3 using phosphate $12(48 \mathrm{mg}, 0.137 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL}), \mathbf{1 e}(76 \mathrm{mg}, 0.45$ $\mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NH}(0.061 \mathrm{~mL}, 0.44 \mathrm{mmol})$ and $\operatorname{BuLi}(1.55 \mathrm{M}$ in hexane, $0.27 \mathrm{~mL}, 0.42 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $15{ }^{\circ} \mathrm{C}$ for 1 h afforded a mixture of $\mathbf{3 1 e}$ and the regioisomer $\mathbf{3 2} \mathbf{e}$ in a ratio of $99: 1$ by ${ }^{1} \mathrm{H}$ NMR ($45 \mathrm{mg}, 89 \%$ yield,

56:44 dr).

Method 2: A solution of LDA in THF (1 mL) was prepared from $i-\mathrm{Pr}_{2} \mathrm{NH}(0.061 \mathrm{~mL}, 0.435 \mathrm{mmol})$ and BuLi $(1.55 \mathrm{M}$ in hexane, $0.27 \mathrm{~mL}, 0.419 \mathrm{mmol})\left(0^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$. To this solution was added $\mathbf{1 e}(75 \mathrm{mg}, 0.443 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min and cooled to $-15^{\circ} \mathrm{C} . \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(8 \mathrm{mg}, 0.007 \mathrm{mmol})$ and a THF solution $(0.5 \mathrm{~mL})$ of phosphate $11(49 \mathrm{mg}, 0.140 \mathrm{mmol})$ were added to the solution. The solution was stirred at $-15^{\circ} \mathrm{C}$ for 15 min and diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was extracted with hexane three times. The combined extracts were washed with brine, dried over MgSO_{4} and concentrated. The residual oil was purified by chromatography on silica gel (hexane/EtOAc) to afford a mixture of 31e and the regioisomer 32e in a ratio of $>99: 1$ by ${ }^{1} \mathrm{H}$ NMR ($41 \mathrm{mg}, 78 \%$ yield, $57: 43 \mathrm{dr}$).

The product 31e obtained by Methods 1 and 2 were combined and purified again by chromatography for characterization: diastereomeric ratio, $61: 39$ by ${ }^{1} \mathrm{H} \mathrm{NMR} ; R_{\mathrm{f}} 0.53$ and 0.64 (hexane/EtOAc $2: 1$); IR (neat) 1594, 1368, 1256, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.030(\mathrm{~s}, 3 \times 0.61 \mathrm{H}), 0.035(\mathrm{~s}, 3 \times 0.39 \mathrm{H}), 0.055(\mathrm{~s}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 1.22-1.38(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.33(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.87$ $(\mathrm{m}, 1 \mathrm{H}), 5.55-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.80(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.34(\mathrm{~m}, 7 \mathrm{H}), 8.45-8.52(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-4.6(+), 18.3(-), 26.0(+), 40.2$ and $40.3(-), 48.00$ and $48.02(+), 58.1$ and $58.2(+), 77.3(+), 123.45$ and $123.52(+), 126.9(+), 128.0$ and $128.1(+), 128.79$ and $128.82(+), 134.8$ and $135.1(+), 135.4$ and $135.7(+)$, 142.4 and $142.6(-), 149.97$ and $150.02(+), 152.9$ and $153.1(-) ;$ HRMS (FAB): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NOSi}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 366.2253$, found 366.2254 .

But-3-ene-1,1-diyldibenzene (33)

According to GP2 using phosphate $\mathbf{1 3}(39 \mathrm{mg}, 0.201 \mathrm{mmol})$ in THF $(1 \mathrm{~mL}), \mathbf{1 a}(118 \mathrm{mg}, 0.701 \mathrm{mmol})$ and BuLi (1.60 M in hexane, $0.38 \mathrm{~mL}, 0.608 \mathrm{mmol}$) in THF $(1 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded $33(34 \mathrm{mg}, 81 \%$ yield): $R_{\mathrm{f}} 0.90$ (hexane/EtOAc 1:2); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.82$ (dt, $J=8.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $4.01(\mathrm{t}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{ddt}, J=17.1,11.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 40.0(-), 51.3(+), 116.4(-), 126.3(+), 128.0(+), 128.5(+), 136.9(+), 144.6(-)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were consistent with those reported.
(E)-Hept-3-ene-1,1-diyldibenzene (34)

According to GP2 using phosphate $14(15 \mathrm{mg}, 0.065 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL}), \mathbf{1 a}(35.3 \mathrm{mg}, 0.210 \mathrm{mmol})$ and $\operatorname{BuLi}(1.60 \mathrm{M}$ in hexane, $0.12 \mathrm{~mL}, 0.192 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded $34(14 \mathrm{mg}, 86 \%$ yield, $>99 \%$ rs by ${ }^{1} \mathrm{H}$ NMR): $R_{\mathrm{f}} 0.93$ and 0.45 (hexane/EtOAc $1: 1$ and 20:1, respectively); IR (neat) 1494, 1450, $968,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{tq}, J=7.2,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{dt}, J=$ $6.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{dd}, J=7.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dt}, J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dt}$, $J=15.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.29(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6(+), 22.6(-), 34.7(-), 38.9(-)$, $51.8(+), 126.1(+), 128.1(+), 128.3(+), 128.4(+), 132.4(+), 144.9(-) ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{22}\left[\mathrm{M}^{+}\right]$ 250.1722, found 250.1721 .

(E)-(4,8-Dimethylnona-3,7-diene-1,1-diyl)dibenzene (35)

(EtO) ${ }_{2} \mathrm{PO}_{2}$

15

35
According to GP2 using phosphate $\mathbf{1 5}(491 \mathrm{mg}, 1.69 \mathrm{mmol})$ in THF $(1 \mathrm{~mL}), \mathbf{1 a}(910 \mathrm{mg}, 5.41 \mathrm{mmol})$ and BuLi (1.63 M in hexane, $3.11 \mathrm{~mL}, 5.07 \mathrm{mmol}$) in THF $(11 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded $35(409 \mathrm{mg}, 80 \%$ yield, $>99 \%$ rs and $98 \% E$ olefin by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR): $R_{\mathrm{f}} 0.90$ (hexane/EtOAc $2: 1$); IR (neat) $1600,1494,1449,699 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.86-2.03(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.94(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.30(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.2(+), 17.7(+), 25.8(+), 26.6(-), 34.3(-), 39.8(-), 51.5(+), 122.7(+), 124.3(+), 126.1$
$(+), 128.1(+), 128.3(+), 131.3(-), 136.3(-), 145.0(-)$. The ${ }^{1} \mathrm{H}$ NMR spectrum is corrected as presented above, while the ${ }^{13} \mathrm{C}$ NMR spectrum is consistent with that reported. ${ }^{\text {S17 }}$

(E)-4-(4,8-Dimethyl-1-phenylnona-3,7-dien-1-yl)pyridine (36)

According to GP3 using phosphate $\mathbf{1 5}(484 \mathrm{mg}, 1.67 \mathrm{mmol})$ in THF $(1 \mathrm{~mL}), \mathbf{1 e}(903 \mathrm{mg}, 5.34 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NH}$ $(0.73 \mathrm{~mL}, 5.21 \mathrm{mmol})$ and BuLi $(1.63 \mathrm{M}$ in hexane, $3.07 \mathrm{~mL}, 5.00 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded 36 ($383 \mathrm{mg}, 75 \%$ yield, $>99 \% \mathrm{rs}$ and $98 \% E$ olefin by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR): $R_{\mathrm{f}} 0.57$ (hexane/EtOAc 2:1); IR (neat) $1596,1451,1414,739,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.88-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.07(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.33(\mathrm{~m}$, $7 \mathrm{H}), 8.48(\mathrm{dd}, J=4.4 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13}{ }^{1} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.2(+), 17.7(+), 25.7(+), 26.5(-), 33.6$ $(-), 39.7(-), 51.0(+), 121.6(+), 123.6(+)(\mathrm{br} \mathrm{s}), 124.1(+), 126.7(+), 128.0(+), 128.6(+), 131.4(-), 137.2(-)$, $143.1(-), 149.7(+), 153.8(-)$; HRMS (EI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}\left(\mathrm{M}^{+}\right) 305.2144$, found 305.2144. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in the lit. ${ }^{\text {S14 }}$ are corrected as presented above.
(Z)-(4,8-Dimethylnona-3,7-diene-1,1-diyl)dibenzene (37)

According to GP2 using phosphate $16(41 \mathrm{mg}, 0.141 \mathrm{mmol})$ in THF (1 mL), 1a ($75 \mathrm{mg}, 0.446 \mathrm{mmol}$) and BuLi (1.55 M in hexane, $0.27 \mathrm{~mL}, 0.42 \mathrm{mmol}$) in THF (1 mL) at $-15^{\circ} \mathrm{C}$ for 15 min afforded $37(34 \mathrm{mg}, 80 \%$ yield, $>99 \%$ rs and $98 \% Z$ olefin by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR): $R_{\mathrm{f}} 0.83$ (hexane/EtOAc 2:1); IR (neat) 1600, 1495, 1449, 1376, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.97-2.08(\mathrm{~m}, 4 \mathrm{H})$, $2.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.16(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.32(\mathrm{~m}, 10 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.8(+), 23.4(+), 25.8(+), 26.5(-), 32.2(-), 34.1(-), 51.8(+), 123.3(+), 124.4(+), 126.1(+), 128.1$ $(+), 128.4(+), 131.7(-), 136.5(-), 145.0(-) ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{28}\left(\mathrm{M}^{+}\right) 304.2191$, found 304.2191
(Z)-4-(4,8-Dimethyl-1-phenylnona-3,7-dien-1-yl)pyridine (38)

According to GP3 using phosphate $16(40 \mathrm{mg}, 0.138 \mathrm{mmol})$ in THF (0.5 mL), $\mathbf{1 e}(74 \mathrm{mg}, 0.437 \mathrm{mmol})$, $i-\mathrm{Pr}_{2} \mathrm{NH}(0.061 \mathrm{~mL}, 0.43 \mathrm{mmol})$ and $\mathrm{BuLi}(1.55 \mathrm{M}$ in hexane, $0.27 \mathrm{~mL}, 0.42 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded 38 ($33 \mathrm{mg}, 79 \%$ yield, $>99 \% \mathrm{rs}$ and $98 \% Z$ olefin by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR): $R_{\mathrm{f}} 0.47$ (hexane/EtOAc 3:1); IR (neat) $1596,1495,1451,1415,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.97-2.03(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05-5.14(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.33(\mathrm{~m}, 7 \mathrm{H}), 8.48(\mathrm{br} \mathrm{d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.7(+), 23.4$ $(+), 25.8(+), 26.4(-), 32.1(-), 33.3(-), 51.2(+), 122.3(+), 123.5(+)(\mathrm{br} \mathrm{s}), 124.2(+), 126.7(+), 128.0(+), 128.6$ $(+), 131.8(-), 137.3(-), 143.1(-), 149.8(+), 153.8(-)$; HRMS (FAB): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}\left[\left(\mathrm{M}+\mathrm{H}^{+}\right)\right]$306.2222, found 306.2225.

Propargylic Products

tert-Butyldimethyl((4-methyl-5,5-diphenylpent-2-yn-1-yl)oxy)silane (39)

According to GP2 using phosphate $17(31 \mathrm{mg}, 0.087 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL}), \mathbf{1 a}(52.5 \mathrm{mg}, 0.312 \mathrm{mmol})$ and BuLi (1.60 M in hexane, $0.16 \mathrm{~mL}, 0.256 \mathrm{mmol}$) in THF (0.5 mL) at $-15{ }^{\circ} \mathrm{C}$ for 15 min afforded $39(33 \mathrm{mg}, 87 \%$ yield, $>99 \%$ rs by ${ }^{1} \mathrm{H}$ NMR): $R_{\mathrm{f}} 0.87$ (hexane/EtOAc 1:1); IR (neat) $1598,1494,1450,1263,1083 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.31(\mathrm{dtq}, J=9.4,2.0,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.37(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.1(+)$, $18.3(-), 20.4(+), 25.9(+), 30.6(+), 52.0(-), 57.5(+), 81.0(-), 88.2(-), 126.4(+), 126.5(+), 128.2(+), 128.5(+)$, $128.6(+), 143.1(-), 143.2(-)$; HRMS (FAB): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{OSi}\left[(\mathrm{M}-\mathrm{H})^{+}\right] 363.2144$, found 363.2138 .
(R)-Trimethyl(3-methyl-4,4-diphenylbut-1-yn-1-yl)silane ((R)-40)

According to GP2 using phosphate $(R)-\mathbf{1 8}(98 \% \%$ ee, $39 \mathrm{mg}, 0.141 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$, $\mathbf{1 a}(75 \mathrm{mg}, 0.446$ $\mathrm{mmol})$ and $\mathrm{BuLi}(1.60 \mathrm{M}$ in hexane, $0.26 \mathrm{~mL}, 0.416 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded $(R)-40$ ($29 \mathrm{mg}, 70 \%$ yield, $>99 \%$ rs by ${ }^{1} \mathrm{H}$ NMR): $>98 \%$ ee as determined by HPLC analysis of the derived acid (see below); $[\alpha]_{\mathrm{D}}{ }^{21}-4\left(c 0.86, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 47-4{ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}} 0.91$ (hexane/EtOAc 1:1); IR (nujol) 1451, 1250, 842, $702 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00(\mathrm{~s}, 9 \mathrm{H}), 1.15(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.27(\mathrm{dq}, \mathrm{J}=9.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.38(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.0(+), 20.1(+), 31.8(+), 57.6(+), 87.0(-)$, $110.6(-), 126.3(+), 126.5(+), 128.0(+), 128.2(+), 128.5(+), 128.8(+), 142.95(-), 143.04(-) ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Si}\left(\mathrm{M}^{+}\right)$292.1647, found 292.1647.

Determination of enantiomeric purity and the absolute configuration of $(R)-\mathbf{4 0}$.

A mixture of the above product $(R)-40(29 \mathrm{mg}, 0.099 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{mg}, 0.145 \mathrm{mmol})$ in $\mathrm{MeOH}(5$ mL) was stirred at rt for 2 h and diluted with $\mathrm{H}_{2} \mathrm{O}$. The resulting mixture was extracted with hexane twice. The combined extracts were dried over MgSO_{4} and concentrated to afford acetylene $(R) \mathbf{- 1 2 2}$, which was dissolved in $\mathrm{CCl}_{4}(1 \mathrm{~mL}), \mathrm{MeCN}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. To the solution were added $\mathrm{NaIO}_{4}(63 \mathrm{mg}, 0.295 \mathrm{mmol})$ and $\mathrm{RuCl}_{3} \cdot \mathrm{nH}_{2} \mathrm{O}$ (ca. 1 mg). The mixture was stirred at rt for 1 h and filtered through a pad of Celite. The filtrate was concentrated to leave an oil, which was purified by chromatography on silica gel to afford acid $(R)-5(21 \mathrm{mg}, 89 \%$ from (R)-40): $R_{\mathrm{f}} 0.13$ (hexane/EtOAc 4:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.31$ (dq, $J=$ $11.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.33(\mathrm{~m}, 10 \mathrm{H}), \mathrm{ca} .8-.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.2(+), 44.3(+), 54.7(+), 126.6(+), 126.7(+), 127.6(+), 128.2(+), 128.6(+), 128.8(+), 142.1(-)$, $142.9(-), 181.6(-)$. These ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$-APT NMR spectra were consistent with the spectra (400 MHz and 100 MHz , respectively) of the same acid obtained from $(S)-4$. Comparison of specific rotations: $[\alpha]_{\mathrm{D}}{ }^{22}+58(c 0.42$, CHCl_{3}) for $(R)-\mathbf{5}$ from $(R)-\mathbf{4 0} ;[\alpha]_{\mathrm{D}}{ }^{21}+57\left(c 1.25, \mathrm{CHCl}_{3}\right)$ for $(R)-5$ from $(S)-\mathbf{4}$ (vide supra); $[\alpha]_{\mathrm{D}}{ }^{26.5}-52.6 \pm 1.7$ (c $1.578, \mathrm{CHCl}_{3}$) for the (S)-isomer in lit., ${ }^{\mathrm{S12}}$ confirming the (R)-configuration of $(R)-5$. HPLC analysis of $(R)-5$: $>98 \%$ ee (Chiralcel AS-H; hexane $\left./ i-\mathrm{PrOH}=99 / 1,1 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}\right): t_{\mathrm{R}}(\mathrm{min})=14.1$ (minor (S)-isomer), 15.2 (major (R)-isomer)).
(R)-(3-Benzhydryloct-1-yn-1-yl)trimethylsilane ((R)-41)

According to GP2 using phosphate $(R)-\mathbf{1 9}(93 \%$ ee, $46 \mathrm{mg}, 0.138 \mathrm{mmol})$ in THF $(1 \mathrm{~mL}), \mathbf{1 a}(74 \mathrm{mg}, 0.44$ $\mathrm{mmol})$ and $\mathrm{BuLi}(1.60 \mathrm{M}$ in hexane, $0.26 \mathrm{~mL}, 0.416 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded $(R)-\mathbf{4 1}$ ($37 \mathrm{mg}, 77 \%$ yield, $>99 \%$ rs by ${ }^{1} \mathrm{H}$ NMR): 92% ee as determined by HPLC analysis (Chiralcel OD-H, hexane $/ i-\operatorname{PrOH}=99.9 / 0.1,0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}, t_{\mathrm{R}}(\mathrm{min})=11.8($ minor (S)-isomer $), 12.1($ major (R)-isomer $\left.)\right) ;[\alpha]_{\mathrm{D}}{ }^{21}$ $+16\left(c 0.71, \mathrm{CHCl}_{3}\right.$); $R_{\mathrm{f}} 0.73$ (hexane/EtOAc 3:1); IR (neat) $2169,1496,1451,1249,842,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.01(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.63(\mathrm{~m}, 1 \mathrm{H})$,
$3.16(\mathrm{ddd}, J=8.6,8.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.0(+), 14.1(+), 22.6(-), 27.0(-), 31.6(-), 33.3(-), 37.8(+), 55.9(+), 88.2(-), 109.4(-)$, $126.3(+), 126.4(+), 128.0(+), 128.3(+), 128.5(+), 129.0(+), 143.1(-), 143.2(-) ;$ HRMS (EI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Si}\left(\mathrm{M}^{+}\right)$348.2273, found 348.2274.

(3-(9H-Xanthen-9-yl)oct-1-yn-1-yl)trimethylsilane (42)

According to GP2 using phosphate $19(47 \mathrm{mg}, 0.141 \mathrm{mmol})$ in THF (1 mL), xanthene ($\mathbf{1 b}$) ($82 \mathrm{mg}, 0.45 \mathrm{mmol}$) and $\operatorname{BuLi}(1.60 \mathrm{M}$ in hexane, $0.26 \mathrm{~mL}, 0.416 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ for 15 min afforded $42(44 \mathrm{mg}, 87 \%$ yield, $>99 \%$ rs by ${ }^{1} \mathrm{H}$ NMR): $R_{\mathrm{f}} 0.83$ (hexane/EtOAc 2:1); IR (neat) $2169,1479,1458,1255,842,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.30(\mathrm{~m}, 7 \mathrm{H}), 1.38-1.48(\mathrm{~m}, 1 \mathrm{H}), 2.57-$ $2.68(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.0(+), 14.1(+), 22.6(-), 27.2(-), 29.7(-), 31.5(-), 43.0(+), 43.3(+), 88.0(-), 108.4$ $(-), 116.1(+), 116.3(+), 122.5(-), 122.7(+), 123.0(+), 123.2(-), 128.0(+), 129.2(+), 129.8(+), 152.9(-), 153.0$ $(-)$; HRMS (EI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{OSi}\left(\mathrm{M}^{+}\right) 362.2066$, found 362.2060.

Part 2: References

S1 W. Kinouchi, R. Saeki, H. Kawashima and Y. Kobayashi, Tetrahedron Lett., 2015, 56, 2265.
S2: Y. Kitano, T. Matsumoto and F. Sato, Tetrahedron, 1988, 44, 4073.
S3: M. Ito, M. Matsuumi, M. G. Murugesh and Y. Kobayashi, J. Org. Chem., 2001, 66, 5881.
S4: Q. Wang and Y. Kobayashi, Y. Org. Lett., 2011, 13, 6252.
S5: A. K. Ghosh, B. D. Chapsal, A. Baldridge, K. Ide, Y. Koh and H. Mitsuya, Org. Lett., 2008, 10, 5135.
S6: J. Dhineshkumar and K.R. Prabhu, Org. Lett., 2013, 15, 6062.
S7: S. Murahashi, Y. Taniguchi, Y. Imada and Y. Tanigawa, J. Org. Chem., 1989, 54, 3292.
S8: S. Nowotny, C. E. Tucker, C. Jubert and P. Knochel, J. Org. Chem., 1995, 60, 2762.
S9: F. Gao, K. P. McGrath, Y. Lee and A. H. Hoveyda, J. Am. Chem. Soc., 2010, 132, 14315.
S10: H. Ohmiya, U. Yokobori, Y. Makida and M. Sawamura, J. Am. Chem. Soc., 2010, 132, 2895.
S11: K. Matsumura, S. Hashiguchi, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1997, 119, 8738.
S12: H. M. Walborsky and C. G. Pitt, J. Am. Chem. Soc., 1962, 84, 4831.
S13: M. T. Reetz, P. Walz, F. Hübner, S. H. Hüttenhain, H. Heimbach and K. Schwellnus, Chem. Ber., 1984, 117, 322.

S14: S.-C. Sha, J. Zhang, P. J. Carroll and P. J. Walsh, J. Am. Chem. Soc., 2013, 135, 17602.
S15: M. Yasuda, T. Saito, M. Ueba and A. Baba, Angew. Chem. Int. Ed., 2004, 43, 1414.
S16: A. Ogata, M. Nemoto, K. Kobayashi, A. Tsubouchi and T. Takeda, J. Org. Chem., 2007, 72, 3816.
S17: J. Zhang, C. Stanciu, B. Wang, M. M. Hussain, C.-S. Da, P. J. Carroll, S. D. Dreher and P. J. Walsh, J. Am. Chem. Soc., 2011, 133, 20552.

Part 3: D-Incorporation Experiments of $\mathbf{P h}_{2} \mathbf{C H}_{\mathbf{2}}$ (1a) (Table S1)

Table S1. D-Incorporation Experiments of Reactant 1a ${ }^{a}$

$\begin{gathered} \mathrm{Ph}_{2} \mathrm{CH}_{2} \text { (1a) } \\ \text { (1 equiv) } \end{gathered}$	$\xrightarrow[\substack{\mathrm{rt}, 15 \min \text { or } 3 \mathrm{~h} \\ \text { THF }}]{\text { 1) base (1 equiv) }}$	2) $\mathrm{D}_{2} \mathrm{O}$ (80 equiv)	
		$\xrightarrow[\mathrm{rt}, 1 \mathrm{~h}, \text { THF }]{ }$	CHD (1a-D)
entry	base (equiv)	reaction time	D-incorporation (\%) ${ }^{\text {b }}$
S1	BuLi (1)	15 min	70.2
S2	BuLi (1)	3 h	71.7
S3	BuLi (3)	15 min	84.2
S4	LDA (1)	15 min	72.5
S5	LDA (1)	3 h	71.9
S6	LiHMDS (1)	15 min	0\%
S7	LiHMDS (1)	3 h	0\%
S8	NaHMDS (1)	15 min	0\%
S9	NaHMDS (1)	3 h	0\%
S10	KHMDS (1)	15 min	0\%
S11	KHMDS (1)	3 h	0\%
S12	NaH (1)	15 min	0\%

${ }^{a}$ Reactant 1a was exposed to given bases in THF at rt for 15 min or 3 h and excess $\mathrm{D}_{2} \mathrm{O}$ was added to the solution (see below for further details). ${ }^{b}$ Calculated as described in the next page.

An Entry using BuLi (Table S1, entry S2): To a solution $1 \mathbf{1 a}(35 \mathrm{mg}, 0.208 \mathrm{mmol})$ in THF (0.5 mL) was added BuLi (1.60 M in hexane, $0.13 \mathrm{~mL}, 0.208 \mathrm{mmol}$) at rt . The resulting dark red solution was stirred at rt for 3 h , and $\mathrm{D}_{2} \mathrm{O}(0.30 \mathrm{~mL}$ from a freshly opened ampule, $99.96 \% \mathrm{D}, 16.6 \mathrm{mmol}, 80$ equiv) was added to the solution, which turned to colorless immediately. After 1 h of stirring at rt , the product was extracted with EtOAc. The extract was dried over MgSO_{4} and concentrated to afford 1a-D (34 $\mathrm{mg}, 97 \%$ yield). D-incorporation was 71.7% by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Other Entries using given Bases: D-incorporation was carried out at rt for 15 min or 3 h according to the method mentioned above using a base (1 equiv). In entry S3, three equiv of BuLi was used to generate the anion $\mathbf{1 a} / \mathrm{BuLi}$.

Table S1, entry S2

Calculation of D-incorporation (\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(1) Integration of the multiplet at 7.3
ppm was set as 4.0 .

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

entry S1, BuLi (1 equiv), 15 min
entry S2, BuLi (1 equiv), 3 h
entry S3, BuLi (3 equiv), 15 min
entry S4, LDA (1 equiv), 15 min
entry S5, LDA (1 equiv), 3 h

continued to the next page
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
entry S6

Part 4: Determination of Enantiomeric, Diastereomeric, Regioisomeric Ratios

Determination of the enantiomeric purity of $(R)-117$ by ${ }^{1} \mathrm{H}$ NMR (This alcohol $(R)-117$ was used for the synthesis of $(R)-2,(R)-3$, and $(R)-18)$

(R)-117

(S)-MTPA ester of (R)-117
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Determination of the enantiomeric purity of $(R)-105$ by ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(S)-MTPA ester of (R)-105
major $:$ minor $=1.00: 0.01=99: 1$
ee $=(99-1) \times 100 /(99+1)$ = 98%

(R)-MTPA ester of (R)-105

$$
\begin{aligned}
& \text { major : minor }=1.00: 0.01=99: 1 \\
& \text { ee }=(99-1) \times 100 /(99+1) \\
& \quad=98 \%
\end{aligned}
$$

Determination of the olefinic purity of 15 and $\mathbf{1 6}$, respectively, by ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (The full specta of $\mathbf{1 5}$ and 16 are attached to part 5 of the supporting info.)

15:16 by height ratio of signal (39.5 ppm) and noise
$=17.3$: $0.4(\mathrm{~cm})$
$=97.7: 2.3=>97: 3$

16:15 by height ratio of signal (39.5 ppm) and noise = 16.3 : 0.4 (cm)
$=97.6: 2.4=>97: 3$

(R)-MTPA ester of (R)-119 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Determination of the enantiomeric purity of (R)-119 by ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ratio calculated using two sets of the signals . $(R):(\mathrm{S})=0.03: 0.03=060: 3.1$

(S)-MTPA ester of (R)-119 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Determination of the enantiomeric purity of the products obtained by Scheme 1 in the text and eqns S1-S3 below by chiral HPLC
conditions: Chiralcel AS-H, hexane $/ i-\mathrm{PrOH}=99 / 1,0.5 \mathrm{~mL} / \mathrm{min}, 33^{\circ} \mathrm{C}$

Figure S1. Racemic alcohol 121

Figure S2. The product of eq S1

Figure S3. The product of eq S2

Figure S4. The product of eq S3

Determination of the ratio of (S)-4 and the regioisomer by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (The full spectrum of (S)-4 is attached to part 5 of this ESI)

$(S)-4:$ regioisomer $=2.0 / 2:(0.0291+0.0296 / 2)$
= $97: 3$

Determination of the ratio of $(R)-4$ and the regioisomer by ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (The full spectrum of $(R)-4$ is attached to part 5 of this ESI)

$(R)-4:$ regioisomer $=>99: 1$

Determination of the ratio of $\mathbf{2 0}$ and the regioisomer by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (The full spectrum of $\mathbf{2 0}$ is attached to part 5 of this ESI)
ratio calculated using two sets of the signals

Determination of the ratio of $\mathbf{2 1}$ and the regioisomer by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (The full spectrum of 21 is attached to part 5 of this ESI)
ratio calculated using two sets of the signals

21 : regioisomer = $1.003: 0.1754$ = $85: 15$

21 : regioisomer
$=(1.014+1.0) / 2:(0.1696+0.1709) / 2$
= 86 : 14

regioisomer of $\mathbf{2 1}$

$\stackrel{\text { : }}{\circ}$

Determination of the ratio of $\mathbf{2 2}$ and the regioisomer by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (The full spectrum of 22 is attached to part 5 of this ESI)

22 : regioisomer
$=1.0: 0.0845$
= $92: 8$

Determination of the ratio of 23 and the regioisomer by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (The full spectrum of 23 is attached to part 5 of this ESI)
ratio calculated using two sets of the signals

$$
\begin{aligned}
& 23: \text { regioisomer } \\
& =0.91 / 1: 0.16 / 2 \\
& =92: 8
\end{aligned}
$$

23

regioisomer of $\mathbf{2 3}$

Determination of the diastereomeric ratio of $\mathbf{2 3}$
= $50.00: 47.78$
= $51: 49$

Determination of the ratio of $\mathbf{2 4}$ and the regioisomer by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (The full spectrum of $\mathbf{2 4}$ is attached to part 5 of this ESI)

Determination of the diastereomeric ratio of 24

$$
\begin{aligned}
& =2.64: 2.56 \\
& =51: 49
\end{aligned}
$$

Determination of the ratio of $\mathbf{2 5}$ and the regioisomer by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (The full spectrum of $\mathbf{2 5}$ is attached to part 5 of this ESI)

25 : regioisomer
= 21.6 : 2.0
= $91: 9$

Determination of the ratio of $\mathbf{2 6}$ and the regioisomer by ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (The full spectrum of $\mathbf{2 6}$ is attached to part 5 of this ESI)

26

26 : regioisomer
= 3.0/3 : 1.3894/6
= $81: 19$
-

Determination of the enantiomeric purity of (R) - 28 by chiral HPLC analysis conditions: Chiralcel OJ-H, hexane/i-PrOH $=99.5 / 0.5,0.1 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$

Determination of the product ratios of $\mathbf{3 0 a}, \mathbf{e}$ and $\mathbf{3 1 a}, \mathbf{e}$ by ${ }^{1} \mathrm{H}$ NMR for calculation of the regioselectivity, stereoselectivity, and diastereselectivity (for 30e and 31e) (spectra are shown on the next pages)

Note: The ${ }^{1} \mathrm{H}$ NMR signals of the $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Bu}$ appeared at higher position were referred to the regioisomer on the basis of the fact that the signals for 26 (derived from 8 and 1a) were observed at a higher position than that of the $\mathrm{S}_{\mathrm{N}} 2$ product. The cis stereochemistry for 31a and 31e was confirmed on the basis of the large difference ($\Delta \delta \mathrm{ca} .1 \mathrm{ppm}$) between the methylene protons on the cyclopentene ring.

Determination of the product ratio by ${ }^{1} \mathrm{H}$ NMR

crude product
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6 H of 32a

30a
$\left(\mathrm{SiBu}\left(\mathrm{CH}_{3}\right)_{2}\right)$

30a: 31a: 32a $=1.0 / 1: 0.0119 / 1: 0.8127 / 6=87: 1: 12$
$(30 a+31 a): 32 a=(87+1): 12=88: 12$ (regioselectivity)
30a: 31a = 87: 1 = $99: 1$ (stereoselectivity)

Determination of the product ratio by ${ }^{1} \mathrm{H}$ NMR

ratio of $30 \mathrm{e}, 31 \mathrm{e}, 32 \mathrm{e}$ (next page)

31e ratio of diastereomers of $\mathbf{3 0 e}$
continued to the next page

$\left.\begin{array}{l}\text { 30e }: 31 e=0.89: 0.04 \\ 30 e: 32 e=0.97 / 1: 0.32 / 6\end{array}\right\}$
30e: 31e: 32e $=91: 4: 5$
$(30 e+31 e): 32 \mathbf{a}=(91+4): 5=95: 5$
(regioselectivity)
30e : 31e $=91: 4=96: 4$
(stereoselectivity)
Determination of the diastereomeric ratio of $\mathbf{3 0 e}$
$=2.60: 2.27$
$=53: 47$

Determination of the product ratio by ${ }^{1} \mathrm{H}$ NMR

expanded ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(The full spectrum of 31a is attached to part 5 of this ESI)

Determination of the product ratio by ${ }^{1} \mathrm{H}$ NMR

$$
\begin{aligned}
& \text { 30e }: 31 \mathbf{e}=0: 1.00 \text { (below) } \\
& 31 e: 32 \mathbf{e}=99: 1 \text { (next page) }
\end{aligned}
$$

30e : 31e : 32e = $0: 99: 1$
31e: 32e = 99:1 (regioselectivity)
30e:31e=0:100 (stereoselectivity)
ratio of diastereomers of 31e
= 56 : 44 (next page)
expanded ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(The full spectrum of 31 e is attached to part 5 of this ESI)

continued to the next page
expanded ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

31e: 32e $=0.91 / 1: 0.05 / 6$ = $99: 1$

Determination of the diastereomeric ratio of 31e
$=1.39: 1.10$
$=56: 44$

Determination of the product ratio by ${ }^{1} \mathrm{H}$ NMR

30e $: \mathbf{3 1 e}=0: 0.99$ (below)
31e $: \mathbf{3 2 e}=99.8: 0.2$ (next page)

30e : 31e : 32e = $0:>99: 1$
31e: 32a = >99: 1 (regioselectivity)
30e:31e = 0:100 (stereoselectivity)
ratio of diastereoisomers of 31e
= 57 : 43 (next page)
expanded ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(The full spectrum of 31 e is attached to part 5 of this ESI)

continued to the next page

Determination of the diastereomeric ratio of 31e
= $1.36: 1.81$
$=43: 57$

Determination of the olefinic purity of 35 by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR
(The full spectra of 35 are attached to part 5 of this ESI)

S49

Determination of the olefinic purity of 36 by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR
(The full spectra of 36 are attached to part 5 of this ESI)

Determination of the olefinic purity of 37 by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR
(The full spectra of 37 are attached to part 5 of this ESI)

Determination of the olefinic purity of 38 by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR
(The full spectra of 38 are attached to part 5 of this ESI)

Determination of the enantiomeric purity of the acid $(R)-5$ by chiral HPLC analysis conditions: Chiralcel AS-H, hexane/i-PrOH =99/1, $1 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}$

2 PDA Multi 1/254nm 4nm
$(S):(R)=48.445: 51.555=48.4: 51.6$

Determination of the enantiomeric purity of $(R)-41$ by chiral HPLC analysis conditions: Chiralcel OD-H, hexane/i-PrOH $=99.9 / 0.1,0.5 \mathrm{~mL} / \mathrm{min}, 35^{\circ} \mathrm{C}$

Part 5: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra to Establish Identity and Purity

(R)-3
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathrm{OP}(\mathrm{O})(\mathrm{OEt})_{2}$
NOTBS
7
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S57

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(O)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S59

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

11
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

12
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$$
(\mathrm{EtO})_{2} \mathrm{PO}_{2}
$$

13
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$(\mathrm{EtO})_{2} \mathrm{PO}_{2}$
14
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$(\mathrm{EtO})_{2} \mathrm{PO}_{2}$
14
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

15
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

15
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

16
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

17
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

17
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(R)-18
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(R)-18
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllll}20 & 18\end{array}$

(S)-121
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

21 (21 / isomer = 85:15)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$22 \quad(22 /$ isomer $=92: 8)$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

122
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$23 \quad(23 /$ isomer $=92: 8)$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(t)

$25 \quad(25 /$ isomer $=91: 9)$
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& 27: \text { regioisomer } \\
& =1.0501: 0.2963 \\
& =78: 22
\end{aligned}
$$

(R)-28
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

30a $\quad(30 a /$ isomer $=87: 12)$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

31a
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

31a
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$180160 \begin{array}{ccc}120 & 100 & 8 / \mathrm{p}\end{array}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

39

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

