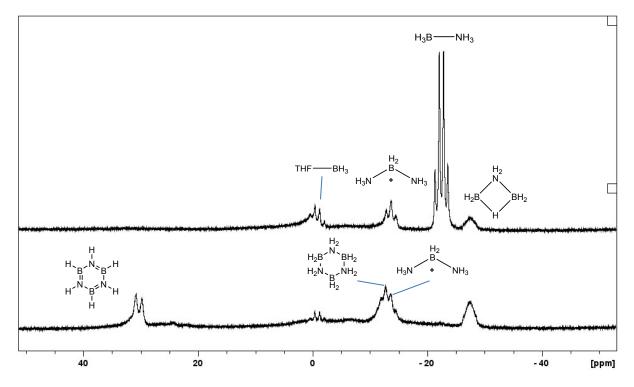
Use of Crown Ethers to Isolate Intermediates in Ammonia-Borane Dehydrocoupling Reactions


Robert J. Less,* Raúl García-Rodríguez, Hayley. R. Simmonds, Lucy. K. Allen, Andrew D. Bond and Dominic S. Wright

Supplementary Information

Syntheses

General experimental procedures

All preparations were performed on a double-manifold vacuum line under a nitrogen atmosphere. The products were isolated and stored with the aid of a nitrogen-filled glove box (Saffron type b), equipped with Cu and molecular sieve columns in order to remove O₂ and moisture, respectively. All ¹¹B, ¹H and ¹³C NMR spectra were recorded using a Bruker DPX 500 MHz NMR spectrometer (¹H, ¹³C referenced to SiMe₄, ¹¹B referenced to BF₃·Et₂O, ²⁷Al referenced to AlCl₃·6H₂O-D₂O). Elemental (C, H, N) analyses were obtained using an Exeter CE-440 Elemental Analyser. Solvents and amine bases were dried by distillation over an appropriate drying agent: THF, Et₂O (both Na/benzophenone), CH₂Cl₂, CD₂Cl₂, Et₃N, ^{*i*}Pr₂EtN (all CaH₂), CDCl₃ (P₂O₅). AlCl₃ was sublimed before use. Ammonia borane and 18-crown-6 were used as supplied (Sigma-Aldrich).

Figure S1 *In situ* ¹¹B NMR spectra of AB + AlCl₃ (1 eq.) in THF after 16h at room temperature (top) and after 16h reflux (bottom).

Synthesis of [(THF)BH₂NH₃(18-C-6)][AlCl₄]

[**1**·THF(18-C-6)][AlCl₄]

AlCl₃ (864 mg, 6.48 mmol) was added to a solution of ammonia borane (50 mg, 1.62 mmol) and 18-crown-6 (428 mg, 1.62 mmol) in 3 ml THF at 0°C [AB(18-C-6) is only partially soluble]. The solution was allowed to warm to room temperature and was stirred for 16h. The reaction mixture was then filtered and layered with 10 ml diethyl ether in a 20 mm diameter tube. After 3d crystals were collected and recrystallised a second time in the same manner (THF-diethyl ether) to yield colourless needles (330 mg, 38 %).

Found (%): C 35.55, H 6.91, N 2.88; Calculated for C₁₆H₃₇AlBCl₄NO₇: C 35.92, H 6.97, N 2.62.

¹¹B NMR (128.4 MHz, 25 °C, CDCl₃), δ /ppm = 1.2 (br).

¹H NMR (400.1 MHz, 25 °C, CDCl₃), δ /ppm = 5.63 (br s, 3H, NH₃), 4.36 (m, 4H, THF), 3.63 (s, 24H, 18-C-6), 2.60 (br, 2H, BH₂), 2.29 (m, 4H, THF).

¹³C NMR (100.6 MHz, 25 °C, CDCl₃), δ/ppm = 79.77 (THF), 70.31 (18-C-6), 25.51 (THF).

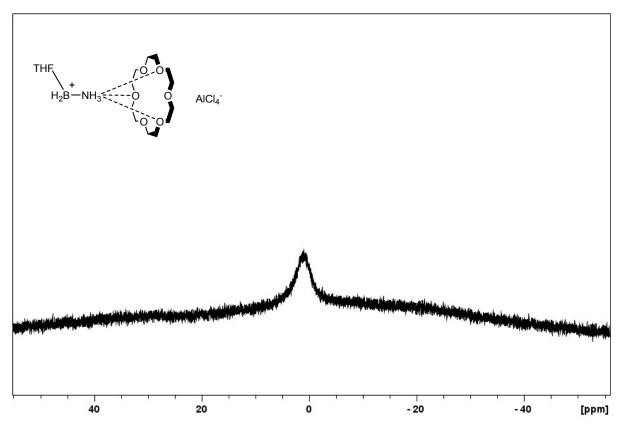


Figure S2¹¹B NMR spectrum of [(THF)BH₂NH₃(18-C-6)][AlCl₄] in CDCl₃.

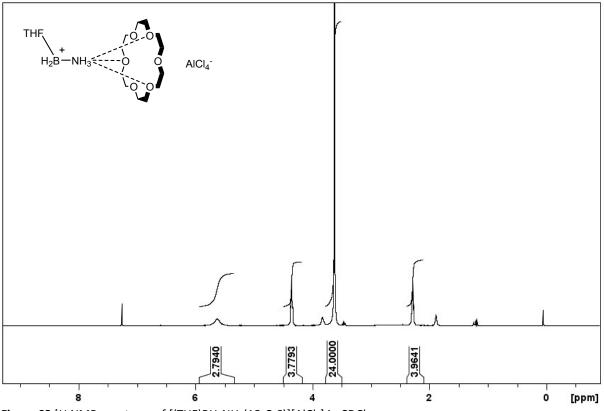


Figure S3 ¹H NMR spectrum of [(THF)BH₂NH₃(18-C-6)][AlCl₄] in CDCl₃.

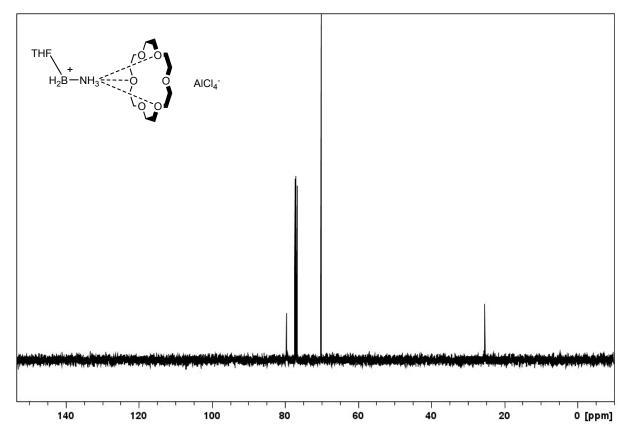


Figure S4 ${}^{13}C{}^{1}H$ NMR spectrum of [(THF)BH₂NH₃(18-C-6)][AlCl₄] in CDCl₃.

Synthesis of [BH₂(NH₃)₂(18-C-6)₂][AlCl₄]

[2(18-C-6)₂][AlCl₄]

AlCl₃ (108 mg, 0.81 mmol) was added to a solution of ammonia borane (25 mg, 0.81 mmol), NH₄Cl (43 mg, 0.81 mmol) and 18-crown-6 (426 mg, 1.62 mmol) in 5 ml THF and the mixture heated to reflux for 16h. The solution was filtered and layered with 10 ml diethyl ether in a 20 mm diameter tube. After 3d the crystals were collected and dried *in vacuo* (370 mg, 61 %).

Found (%): C 38.72, H 8.01, N 3.70; Calculated for C₂₄H₅₆AlBCl₄N₂O₁₂: C 38.73, H 7.58, N 3.76.

¹¹B NMR (128.4 MHz, 25 °C, CDCl₃), δ /ppm = -13.7 (br).

¹H NMR (400.1 MHz, 25 °C, CDCl₃), δ /ppm = 5.90 (br s, 6H, NH₃), 3.66 (s, 48H, 18-C-6), 2.06 (br, 2H, BH₂).

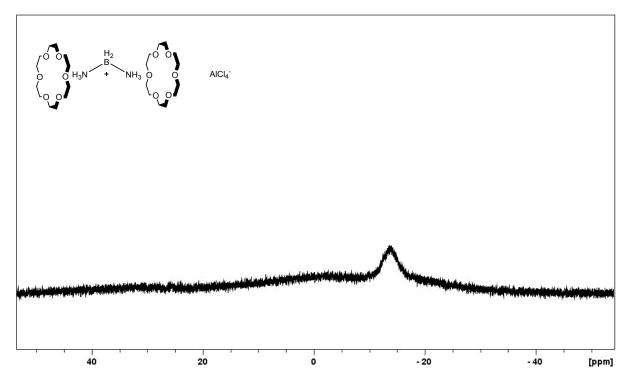


Figure S5 11 B NMR spectrum of [BH₂(NH₃)₂(18-C-6)₂][AlCl₄] in CDCl₃.

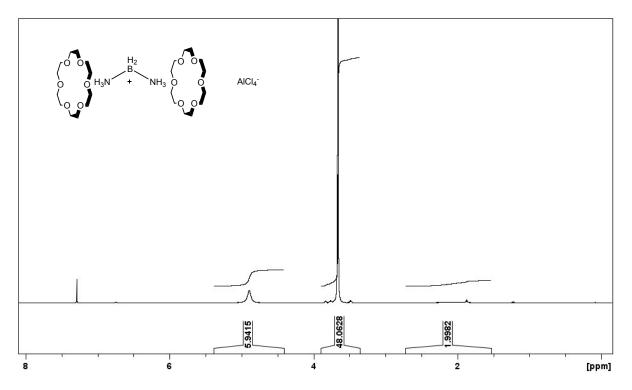
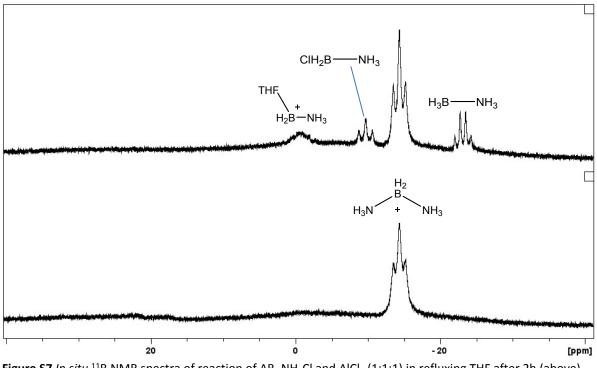



Figure S6 ¹H NMR spectrum of [BH₂(NH₃)₂(18-C-6)₂][AlCl₄] in CDCl₃.

Figure S7 In situ ¹¹B NMR spectra of reaction of AB, NH_4Cl and $AlCl_3$ (1:1:1) in refluxing THF after 2h (above), 16h (below).

Synthesis of [(Et₃N)BH₂NH₃(18-C-6)][AlCl₄]

[1·Et₃N(18-C-6)][AlCl₄]

Triethylamine (60 μ l, 43 mg, 0.43 mmol) was added to a solution of [(THF)BH₂NH₃(18-C-6)][AlCl₄] (230 mg, 0.43 mmol) in 2 ml DCM at -78°C. The reaction mixture and allowed to warm to room temperature and was stirred for 16h, filtered and layered with 10 ml hexane in a 20 mm diameter tube. After 3d crystals were collected and dried *in vacuo* (114 mg, 47 %).

Found (%): C 37.90, H 8.12, N 4.96; Calculated for C₁₈H₄₄AlBCl₄N₂O₆: C 38.32, H 7.86, N 4.97.

¹¹B NMR (128.4 MHz, 25 °C, CDCl₃), δ /ppm = -9.2 (br).

¹H NMR (400.1 MHz, 25 °C, CDCl₃), δ/ppm = 5.11 (br s, 3H, NH₃), 3.66 (s, 24H, 18-C-6), 2.90 (q, *J* = 7.3 Hz, 6H, NCH₂CH₃), 1.96 (br, 2H, BH₂), 1.24 (t, 9H, *J* = 7.3 Hz, 9H, NCH₂CH₃).

¹³C NMR (100.6 MHz, 25 °C, CDCl₃), δ/ppm = 70.18 (18-C-6), 48.98 (NCH₂CH₃), 8.10 (NCH₂CH₃).

Note: When this reaction was performed in THF rather than DCM, subsequent layering with hexane resulted in crystallisation of $[2(18-C-6)_2][AICI_4]$ instead.

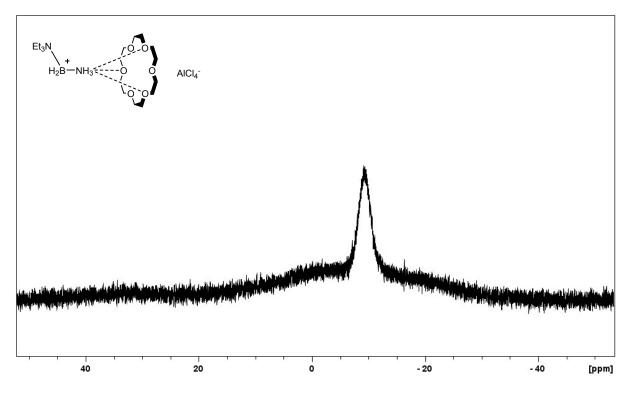
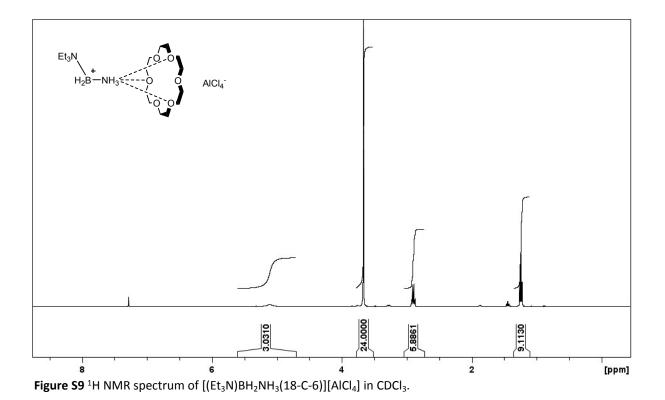
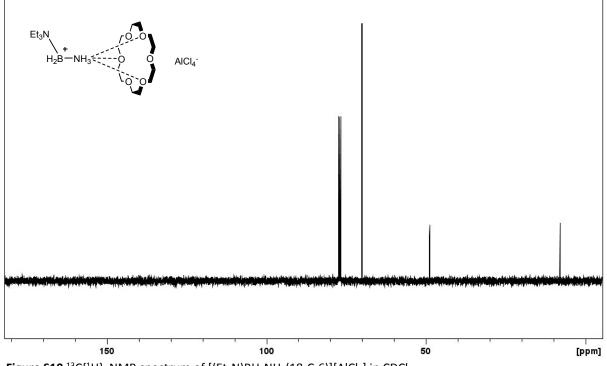
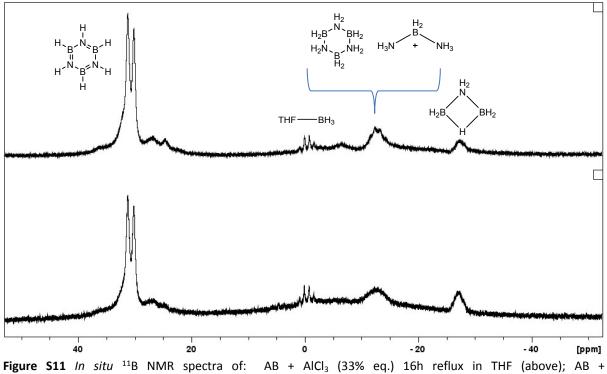
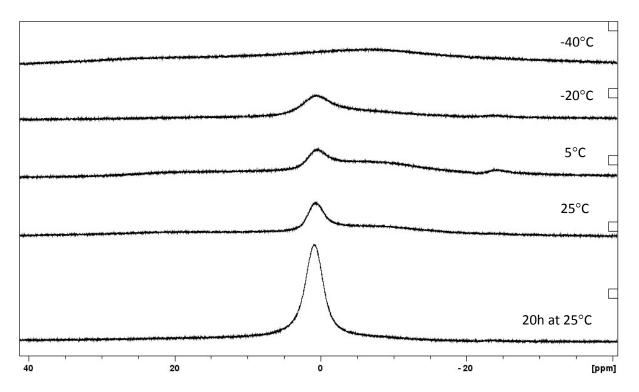
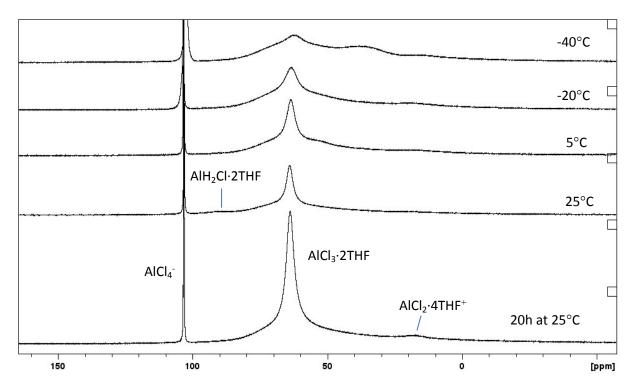



Figure S8 ¹¹B NMR spectrum of [(Et₃N)BH₂NH₃(18-C-6)][AlCl₄] in CDCl₃.


Figure S10 $^{13}C\{^{1}H\}\,$ NMR spectrum of [(Et_3N)BH_2NH_3(18-C-6)][AlCl_4] in CDCl_3.

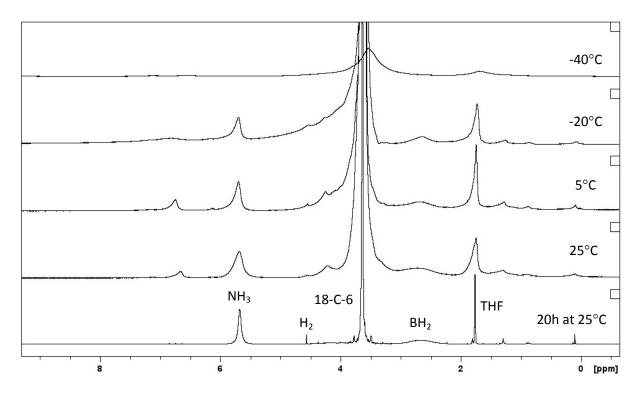
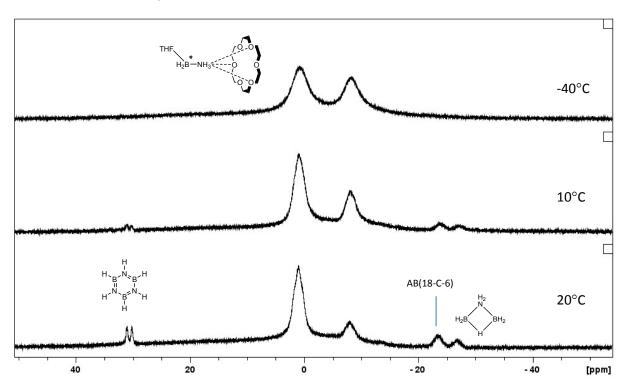

[(THF)BH₂NH₃(18-C-6)][AlCl₄] (10 % eq.) 16h reflux in THF (below).

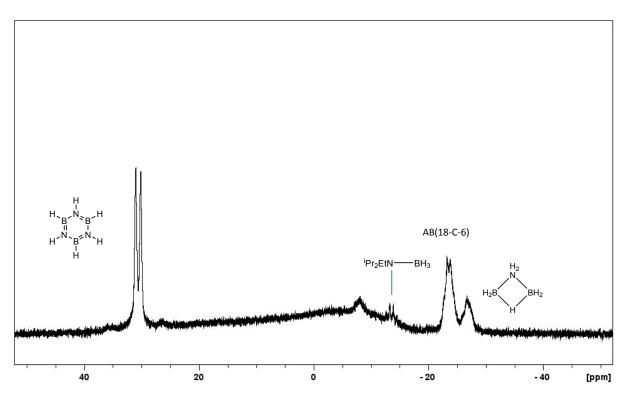
In situ variable-temperature NMR study of reaction of AB + 18-C-6 (1 eq.) with AlCl₃ (4 eq.).

A solution of $AlCl_3$ (85 mg, 0.64 mmol) in 0.3 ml d₈-THF was injected into an NMR tube containing a solution of amine borane (5 mg, 0.16 mmol) and 18-crown-6 (42 mg, 0.16 mmol) in 0.2 ml d₈-THF held at -78°C and shaken before transferring to the spectrometer. ¹¹B and ¹H spectra were collected at -40°C and at further 10°C intervals until room temperature.

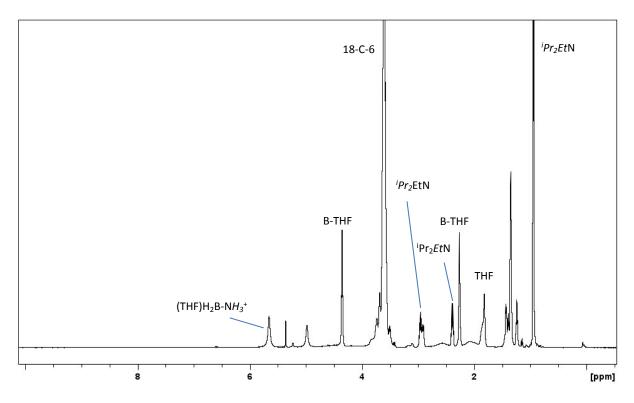
Figure S12 In situ variable-temperature ¹¹B NMR spectra of reaction of AB + 18-C-6 (1 eq.) with AlCl₃ (4 eq.) in d_8 -THF.

Figure S13 In situ variable-temperature ²⁷Al NMR spectra of reaction of AB + 18-C-6 (1 eq.) with AlCl₃ (4 eq.) in d_8 -THF.


Figure S14 In situ variable-temperature ¹H NMR spectra of reaction of AB + 18-C-6 (1 eq.) with AlCl₃ (4 eq.) in d_8 -THF.

In situ variable-temperature ¹¹B NMR study of reaction of $[(THF)BH_2NH_3(18-C-6)][AlCl_4]$ with disopropylethylamine


 ${}^{i}\text{Pr}_{2}\text{EtN}$ (33 µl, 24 mg, 0.19 mmol) was injected directly into an NMR tube containing [(THF)BH₂NH₃(18-C-6)][AlCl₄] (50 mg, 0.09 mmol) in 0.5 ml CD₂Cl₂ held at -78°C and shaken before transferring to the spectrometer. ${}^{11}\text{B}$ and ${}^{1}\text{H}$ spectra were collected at -40°C and at further 10°C intervals until room temperature.

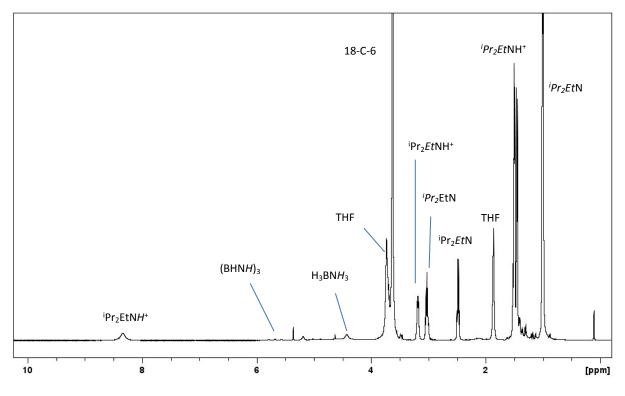

Figure S15 *In situ* variable temperature ¹¹B NMR spectra of $[(Et_3N)BH_2NH_3(18-C-6)][AlCl_4] + {}^{i}Pr_2EtN$ (2 eq.) in CD₂Cl₂.

Figure S16 *In situ* variable temperature ¹¹B NMR spectrum of $[(Et_3N)BH_2NH_3(18-C-6)][AlCl_4] + {}^{i}Pr_2EtN$ (2 eq.) in CD₂Cl₂ after shaking again at room temperature.

Figure S17 In situ variable temperature ¹H NMR spectrum of $[(Et_3N)BH_2NH_3(18-C-6)][AlCl_4] + {}^{i}Pr_2EtN$ (2 eq.) in CD_2Cl_2 (-40°C).

Figure S18 *In situ* variable temperature ¹H NMR spectrum of $[(Et_3N)BH_2NH_3(18-C-6)][AlCl_4] + {}^{i}Pr_2EtN$ (2 eq.) in CD_2Cl_2 (room temperature after shaking sample).

Growth of crystals for X-ray diffraction

[(THF)BH₂NH₃(18-C-6)][AlCl₄]

 $AICI_3$ (258 mg, 1.93 mmol) was added to a solution of ammonia borane (20 mg, 0.65 mmol) and 18-crown-6 (172 mg, 0.65 mmol) in 3 ml THF and stirred at room temperature for 16h. Layering of 1 ml of the reaction mixture with hexane in a narrow (1cm diameter) tube produced crystals after standing for several days.

[BH₂(NH₃)₂(18-C-6)₂][AlCl₄]

[**2**(18-C-6)₂][AlCl₄]

Method 1: from AB + AlCl₃ / THF reflux

 $AICI_3$ (87 mg, 0.65 mmol) was added to a solution of ammonia borane (20 mg, 0.65 mmol) and 18-crown-6 (172 mg, 0.65 mmol) in 2 ml THF and the mixture heated to reflux for 16h. Layering of 1 ml of the reaction mixture with hexane in a narrow (10 mm diameter) tube produced crystals after standing for several days.

Method 2: from $[1 \cdot THF(18-C-6)][AlCl_4] + Et_3N / THF$

Triethylamine (50 μ l, 37 mg, 0.36 mmol) was added to a solution of [(THF)BH₂NH₃(18-C-6)][AlCl₄] (100 mg, 0.23 mmol) in 2 ml THF at room temperature and was stirred for 16h. Layering of 1 ml of the reaction mixture with hexane in a narrow (10 mm diameter) tube produced crystals after standing for several days.

Both methods gave crystals of identical unit cell parameters. The data presented are those obtained from method 2.

$[(Et_3N)BH_2NH_3(18-C-6)][A|C|_4]$

[**1**·Et₃N(18-C-6)][AlCl₄]

Triethylamine (50 μ l, 37 mg, 0.36 mmol) was added to a solution of [(THF)BH₂NH₃(18-C-6)][AlCl₄] (100 mg, 0.23 mmol) in 3 ml DCM at room temperature and was stirred for 16h. The solution was filtered and layered with hexane in a 20 mm diameter tube, which produced crystals after standing for several days.

[**1**·THF(18-C-6)][AlCl₄]

X-Ray Crystallography

Data for all complexes were collected at 180(2) K on a Bruker D8-QUEST diffractometer using an Incoatec I μ S Cu microsource (λ = 1.5418 Å). Crystals were mounted directly from solution using perfuorohydrocarbon oil to prevent atmospheric oxidation, hydrolysis, and solvent loss. Structures were solved using SHELXT (Sheldrick, 2015) and refined using SHELXL-2014 (Sheldrick, 2015).

CCDC No.	1443249	1443250	1443248
Compound	[(THF)BH2NH3(18-C-6)] [AICI4]	[BH ₂ (NH ₃) ₂ (18-C-6) ₂] [AICl ₄]	[(Et₃N)BH₂NH₃(18-C-6)] [AlCl₄]
	[1 ·THF(18-C-6)][AlCl ₄]	[2 (18-C-6) ₂][AlCl ₄]	[1 ·Et ₃ N(18-C-6)][AlCl ₄]
Chemical formula	C ₁₆ H ₃₇ AIBCl ₄ NO ₇	$C_{24}H_{56}AIBCI_4N_2O_{12}$	C ₁₈ H ₄₄ AIBCl ₄ N ₂ O ₆
FW / g·mol ⁻¹	535.05	744.29	564.14
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	Pna2 ₁	Pn	Pna2 ₁
a / Å	19.0847(7)	13.6132(5)	12.7434(3)
b / Å	16.0369(6)	16.0212(6)	13.7696(3)
c / Å	8.8244(3)	17.7762(7)	16.4706(4)
β/°		94.329(2)	
V / Å ³	2700.79(17)	3865.9(3)	2890.12(12)
Ζ	4	4	4
$ ho_{\rm calcd}$ / g·cm ⁻³	1.316	1.279	1.187
μ / mm ⁻¹	4.589	3.457	4.296
Reflections collected	16779	53146	17536
Independent reflections	4023	14383	4838
R _{int}	0.060	0.058	0.038
$R1 [l > 2\sigma(l)]$	0.099	0.075	0.032
wR2 (all data)	0.219	0.194	0.072

	Flack parameter	0.02(2)	0.25(2)*	0.15(2)*			
*	* Defined as an inversion twin						

* Refined as an inversion twin.