Use of Crown Ethers to Isolate Intermediates in Ammonia-Borane Dehydrocoupling Reactions

Robert J. Less,* Raúl García-Rodríguez, Hayley. R. Simmonds, Lucy. K. Allen, Andrew D. Bond and Dominic S. Wright

Supplementary Information

Syntheses

General experimental procedures

All preparations were performed on a double-manifold vacuum line under a nitrogen atmosphere. The products were isolated and stored with the aid of a nitrogen-filled glove box (Saffron type b), equipped with Cu and molecular sieve columns in order to remove O_{2} and moisture, respectively. All ${ }^{11} \mathrm{~B},{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a Bruker DPX 500 MHz NMR spectrometer $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$ referenced to $\mathrm{SiMe}_{4},{ }^{11} \mathrm{~B}$ referenced to $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},{ }^{27} \mathrm{Al}$ referenced to $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O}$). Elemental (C, H, N) analyses were obtained using an Exeter CE-440 Elemental Analyser. Solvents and amine bases were dried by distillation over an appropriate drying agent: THF, $\mathrm{Et}_{2} \mathrm{O}$ (both $\mathrm{Na} /$ benzophenone), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N},{ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}\left(\right.$ all $\left.\mathrm{CaH}_{2}\right), \mathrm{CDCl}_{3}\left(\mathrm{P}_{2} \mathrm{O}_{5}\right) . \mathrm{AlCl}_{3}$ was sublimed before use. Ammonia borane and 18-crown-6 were used as supplied (Sigma-Aldrich).

Figure S1 In situ ${ }^{11} \mathrm{~B}$ NMR spectra of $\mathrm{AB}+\mathrm{AICl}_{3}$ (1 eq.) in THF after 16 h at room temperature (top) and after 16 h reflux (bottom).

Synthesis of [(THF)BH2 $\left.\mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$

AlCl_{3} ($864 \mathrm{mg}, 6.48 \mathrm{mmol}$) was added to a solution of ammonia borane ($50 \mathrm{mg}, 1.62 \mathrm{mmol}$) and 18-crown-6 ($428 \mathrm{mg}, 1.62 \mathrm{mmol}$) in 3 ml THF at $0^{\circ} \mathrm{C}$ [$\mathrm{AB}(18-\mathrm{C}-6$) is only partially soluble]. The solution was allowed to warm to room temperature and was stirred for 16 h . The reaction mixture was then filtered and layered with 10 ml diethyl ether in a 20 mm diameter tube. After 3d crystals were collected and recrystallised a second time in the same manner (THF-diethyl ether) to yield colourless needles ($330 \mathrm{mg}, 38 \%$).

Found (\%): C 35.55, H 6.91, N 2.88; Calculated for $\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{AlBCl}_{4} \mathrm{NO}_{7}$: C 35.92, H 6.97, N 2.62 .
${ }^{11} \mathrm{~B}$ NMR ($\left.128.4 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right), \delta / \mathrm{ppm}=1.2(\mathrm{br})$.
${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=5.63\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right), 4.36(\mathrm{~m}, 4 \mathrm{H}, \mathrm{THF}), 3.63(\mathrm{~s}, 24 \mathrm{H}$, 18-C-6), 2.60 (br, 2H, BH 2), 2.29 (m, 4H, THF).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $25{ }^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=79.77$ (THF), 70.31 (18-C-6), 25.51 (THF).

Figure $\mathbf{S 2}{ }^{11}{ }^{11}$ NMR spectrum of $\left[(\mathrm{THF}) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ in CDCl_{3}.

Figure S3 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{THF}) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AICl}_{4}\right]$ in CDCl_{3}.

Figure S4 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{THF}) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AICl}_{4}\right]$ in CDCl_{3}.

Synthesis of $\left[\mathrm{BH}_{2}\left(\mathrm{NH}_{3}\right)_{2}(18-\mathrm{C}-6)_{2}\right]\left[\mathrm{AlCl}_{4}\right]$

$\left[2(18-\mathrm{C}-6)_{2}\right]\left[\mathrm{AlCl}_{4}\right]$

$\mathrm{AlCl}_{3}(108 \mathrm{mg}, 0.81 \mathrm{mmol})$ was added to a solution of ammonia borane ($25 \mathrm{mg}, 0.81 \mathrm{mmol}$), $\mathrm{NH}_{4} \mathrm{Cl}$ ($43 \mathrm{mg}, 0.81 \mathrm{mmol}$) and 18 -crown-6 ($426 \mathrm{mg}, 1.62 \mathrm{mmol}$) in 5 ml THF and the mixture heated to reflux for 16 h . The solution was filtered and layered with 10 ml diethyl ether in a 20 mm diameter tube. After 3d the crystals were collected and dried in vacuo ($370 \mathrm{mg}, 61 \%$).

Found (\%): C 38.72, H 8.01, N 3.70; Calculated for $\mathrm{C}_{24} \mathrm{H}_{56} \mathrm{AlBCl}_{4} \mathrm{~N}_{2} \mathrm{O}_{12}$: C 38.73, H 7.58, N 3.76 .
${ }^{11} \mathrm{~B}$ NMR ($128.4 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=-13.7$ (br).
${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=5.90\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{NH}_{3}\right), 3.66(\mathrm{~s}, 48 \mathrm{H}, 18-\mathrm{C}-6), 2.06(\mathrm{br}, 2 \mathrm{H}$, $B H_{2}$).

Figure $\mathrm{S5}^{11}{ }^{11} \mathrm{~B}$ NMR spectrum of $\left[\mathrm{BH}_{2}\left(\mathrm{NH}_{3}\right)_{2}(18-\mathrm{C}-6)_{2}\right]\left[\mathrm{AlCl}_{4}\right]$ in CDCl_{3}.

Figure S6 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{BH}_{2}\left(\mathrm{NH}_{3}\right)_{2}(18-\mathrm{C}-6)_{2}\right]\left[\mathrm{AICl}_{4}\right]$ in CDCl_{3}.

Figure $\mathbf{S 7}$ In situ ${ }^{11} \mathrm{~B}$ NMR spectra of reaction of $\mathrm{AB}, \mathrm{NH}_{4} \mathrm{Cl}$ and AlCl_{3} (1:1:1) in refluxing THF after 2 h (above), 16h (below).

Synthesis of $\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$

$\left[1 \cdot \mathrm{Et}_{3} \mathrm{~N}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$

Triethylamine ($60 \mu \mathrm{l}, 43 \mathrm{mg}, 0.43 \mathrm{mmol}$) was added to a solution of $\left[(\mathrm{THF}) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ $(230 \mathrm{mg}, 0.43 \mathrm{mmol})$ in 2 ml DCM at $-78^{\circ} \mathrm{C}$. The reaction mixture and allowed to warm to room temperature and was stirred for 16 h , filtered and layered with 10 ml hexane in a 20 mm diameter tube. After 3d crystals were collected and dried in vacuo (114 mg, 47%).

Found (\%): C 37.90, H 8.12, N 4.96; Calculated for $\mathrm{C}_{18} \mathrm{H}_{44} \mathrm{AlBCl}_{4} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 38.32, H 7.86, N 4.97.
${ }^{11} \mathrm{~B}$ NMR (128.4 MHz, $25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=-9.2(\mathrm{br})$.
${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, 25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}$), $\delta / \mathrm{ppm}=5.11\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right.$), 3.66 (s, 24H, 18-C-6), 2.90 (q, J=7.3 $\mathrm{Hz}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}$), 1.96 (br, $2 \mathrm{H}, \mathrm{BH}_{2}$), $1.24\left(\mathrm{t}, 9 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right.$).
${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right)$, $\delta / \mathrm{ppm}=70.18(18-\mathrm{C}-6), 48.98\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$, $8.10\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right)$.

Note: When this reaction was performed in THF rather than DCM, subsequent layering with hexane resulted in crystallisation of $\left[2(18-\mathrm{C}-6)_{2}\right]\left[\mathrm{AICl}_{4}\right]$ instead.

Figure $\mathbf{S 8}^{11}{ }^{11} \mathrm{NMR}$ spectrum of $\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ in CDCl_{3}.

Figure $\mathbf{S 9}{ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ in CDCl_{3}.

Figure S10 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ in CDCl_{3}.

Figure S11 In situ ${ }^{11} \mathrm{~B}$ NMR spectra of: $\mathrm{AB}+\mathrm{AlCl}_{3}$ (33% eq.) 16 h reflux in THF (above); $\mathrm{AB}+$ [(THF) $\left.\mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ (10% eq.) 16 h reflux in THF (below).

In situ variable-temperature NMR study of reaction of AB+18-C-6 (1 eq.) with AlCl_{3} (4 eq.).

A solution of AlCl_{3} ($85 \mathrm{mg}, 0.64 \mathrm{mmol}$) in $0.3 \mathrm{ml} \mathrm{d}_{8}$-THF was injected into an NMR tube containing a solution of amine borane ($5 \mathrm{mg}, 0.16 \mathrm{mmol}$) and 18 -crown-6 ($42 \mathrm{mg}, 0.16 \mathrm{mmol}$) in 0.2 ml d 8 -THF held at $-78^{\circ} \mathrm{C}$ and shaken before transferring to the spectrometer. ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ spectra were collected at $-40^{\circ} \mathrm{C}$ and at further $10^{\circ} \mathrm{C}$ intervals until room temperature.

Figure S12 In situ variable-temperature ${ }^{11} \mathrm{~B}$ NMR spectra of reaction of $\mathrm{AB}+18-\mathrm{C}-6$ (1 eq.) with AlCl_{3} (4 eq.) in d_{8}-THF.

Figure S13 In situ variable-temperature ${ }^{27} \mathrm{AI}$ NMR spectra of reaction of $\mathrm{AB}+18-\mathrm{C}-6$ (1 eq.) with AICl_{3} (4 eq.) in d_{8}-THF.

Figure S14 In situ variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra of reaction of $\mathrm{AB}+18-\mathrm{C}-6$ (1 eq.) with AICl_{3} (4 eq.) in d_{8}-THF.

In situ variable-temperature ${ }^{11} \mathrm{~B}$ NMR study of reaction of [(THF) $\left.\mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ with diisopropylethylamine
${ }^{i} \operatorname{Pr}_{2} \operatorname{EtN}(33 \mu \mathrm{l}, 24 \mathrm{mg}, 0.19 \mathrm{mmol})$ was injected directly into an NMR tube containing [(THF) $\left.\mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right](50 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $0.5 \mathrm{ml} \mathrm{CD} \mathrm{Cl}_{2}$ held at $-78^{\circ} \mathrm{C}$ and shaken before transferring to the spectrometer. ${ }^{11} \mathrm{~B}$ and ${ }^{1} \mathrm{H}$ spectra were collected at $-40^{\circ} \mathrm{C}$ and at further $10^{\circ} \mathrm{C}$ intervals until room temperature.

Figure S15 In situ variable temperature ${ }^{11} \mathrm{~B}$ NMR spectra of $\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]+{ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}$ (2 eq.) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S16 In situ variable temperature ${ }^{11} \mathrm{~B}$ NMR spectrum of $\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]+{ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}$ (2 eq.) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ after shaking again at room temperature.

Figure S17 In situ variable temperature ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]+{ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}$ (2 eq.) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(-40^{\circ} \mathrm{C}\right)$.

Figure $\mathbf{S 1 8}$ In situ variable temperature ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]+{ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}$ (2 eq.) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (room temperature after shaking sample).

Growth of crystals for X-ray diffraction

$\left[(\mathrm{THF}) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AICl}_{4}\right]$
[1-THF(18-C-6)][AICl $\left.{ }_{4}\right]$
$\mathrm{AlCl}_{3}(258 \mathrm{mg}, 1.93 \mathrm{mmol})$ was added to a solution of ammonia borane ($20 \mathrm{mg}, 0.65 \mathrm{mmol}$) and 18-crown-6 ($172 \mathrm{mg}, 0.65 \mathrm{mmol}$) in 3 ml THF and stirred at room temperature for 16h. Layering of 1 ml of the reaction mixture with hexane in a narrow (1 cm diameter) tube produced crystals after standing for several days.

$$
\left[\mathrm{BH}_{2}\left(\mathrm{NH}_{3}\right)_{2}(18-\mathrm{C}-6)_{2}\right]\left[\mathrm{AlCl}_{4}\right]
$$

$$
\left[2(18-C-6)_{2}\right]\left[A / C I_{4}\right]
$$

Method 1: from $\mathrm{AB}+\mathrm{AlCl}_{3} /$ THF reflux
$\mathrm{AlCl}_{3}(87 \mathrm{mg}, 0.65 \mathrm{mmol})$ was added to a solution of ammonia borane ($20 \mathrm{mg}, 0.65 \mathrm{mmol}$) and 18 -crown-6 ($172 \mathrm{mg}, 0.65 \mathrm{mmol}$) in 2 ml THF and the mixture heated to reflux for 16 h . Layering of 1 ml of the reaction mixture with hexane in a narrow (10 mm diameter) tube produced crystals after standing for several days.

Method 2: from [1•THF(18-C-6)][AICl $\left.{ }_{4}\right]+\mathrm{Et}_{3} \mathrm{~N} / \mathrm{THF}$

Triethylamine ($50 \mu \mathrm{l}, 37 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to a solution of [(THF) $\left.\mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) in 2 ml THF at room temperature and was stirred for 16 h . Layering of 1 ml of the reaction mixture with hexane in a narrow (10 mm diameter) tube produced crystals after standing for several days.

Both methods gave crystals of identical unit cell parameters. The data presented are those obtained from method 2.

$\left[\left(E t_{3} N\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$

$\left[1 \cdot E t_{3} N(18-C-6)\right]\left[A / C l_{4}\right]$

Triethylamine ($50 \mu \mathrm{l}, 37 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to a solution of [(THF) $\left.\mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]$ ($100 \mathrm{mg}, 0.23 \mathrm{mmol}$) in 3 ml DCM at room temperature and was stirred for 16 h . The solution was filtered and layered with hexane in a 20 mm diameter tube, which produced crystals after standing for several days.

X-Ray Crystallography

Data for all complexes were collected at 180(2) K on a Bruker D8-QUEST diffractometer using an Incoatec $I \mu \mathrm{SCu}$ microsource ($\lambda=1.5418 \AA$). Crystals were mounted directly from solution using perfuorohydrocarbon oil to prevent atmospheric oxidation, hydrolysis, and solvent loss. Structures were solved using SHELXT (Sheldrick, 2015) and refined using SHELXL-2014 (Sheldrick, 2015).

CCDC No.	1443249	1443250	1443248
Compound	$\begin{gathered} {\left[(\mathrm{THF}) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]} \\ {\left[\mathrm{AICl}_{4}\right]} \\ {[1 \cdot \mathrm{THF}(18-\mathrm{C}-6)]\left[\mathrm{AlCl}_{4}\right]} \end{gathered}$	$\begin{gathered} {\left[\mathrm{BH}_{2}\left(\mathrm{NH}_{3}\right)_{2}(18-\mathrm{C}-6)_{2}\right]} \\ {\left[\mathrm{AICl}_{4}\right]} \\ {\left[2(18-\mathrm{C}-6)_{2}\right]\left[\mathrm{AlCl}_{4}\right]} \end{gathered}$	$\begin{gathered} {\left[\left(\mathrm{Et}_{3} \mathrm{~N}\right) \mathrm{BH}_{2} \mathrm{NH}_{3}(18-\mathrm{C}-6)\right]} \\ {\left[\mathrm{AICl}_{4}\right]} \\ {\left[1 \cdot \mathrm{Et}_{3} \mathrm{~N}(18-\mathrm{C}-6)\right]\left[\mathrm{AlCl}_{4}\right]} \end{gathered}$
Chemical formula	$\mathrm{C}_{16} \mathrm{H}_{37} \mathrm{AlBCl}_{4} \mathrm{NO}_{7}$	$\mathrm{C}_{24} \mathrm{H}_{56} \mathrm{AlBCl}_{4} \mathrm{~N}_{2} \mathrm{O}_{12}$	$\mathrm{C}_{18} \mathrm{H}_{44} \mathrm{AlBCl}_{4} \mathrm{~N}_{2} \mathrm{O}_{6}$
FW / g. mol^{-1}	535.05	744.29	564.14
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	Pna2 ${ }_{1}$	Pn	Pna2 1_{1}
a / \AA	19.0847(7)	13.6132(5)	12.7434(3)
b / \AA	16.0369(6)	16.0212(6)	13.7696(3)
c / \AA	8.8244(3)	17.7762(7)	16.4706(4)
$\beta /^{\circ}$		94.329(2)	
V / \AA^{3}	2700.79(17)	3865.9(3)	2890.12(12)
Z	4	4	4
$\rho_{\text {calcd }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.316	1.279	1.187
μ / mm^{-1}	4.589	3.457	4.296
Reflections collected	16779	53146	17536
Independent reflections	4023	14383	4838
$R_{\text {int }}$	0.060	0.058	0.038
$R 1[I>2 \sigma(I)]$	0.099	0.075	0.032
wR2 (all data)	0.219	0.194	0.072

Flack parameter	$0.02(2)$	$0.25(2)^{*}$	$0.15(2)^{*}$

* Refined as an inversion twin.

