Supporting Information

Chelation-assisted Pd-catalysed *ortho*-selective oxidative
C-H/C-H cross-coupling of aromatic carboxylic acids with
arenes and intramolecular Friedel-Crafts acylation: one-pot
formation of fluorenones

Denan Sun, Bijin Li, Jingbo Lan,* Quan Huang and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical
School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China

Fax: 86-28-85412203; E-mail: jingbolan@scu.edu.cn; jsyou@scu.edu.cn

Table of Contents

I. General remarks	S3
II. Optimization of the synthesis of fluorenones	S3
III. General procedure for the synthesis of flureones	S6
IV. Mechanistic study	S6
V. UV-Vis absorption and Emission spectra of 6	S8
VI. Experimental data for the described substances	S8
VII. References	S19
VIII. Copies of ¹ H and ¹³ C NMR spectra	S20

I. General Remarks

NMR spectra were obtained on a Bruker AV II-400 MHz spectrometer. The 1 H NMR (400 MHz) chemical shifts were measured relative to CDCl₃, TMS or DMSO- d_6 as the internal reference (CDCl₃: $\delta = 7.26$ ppm; TMS: $\delta = 0.00$ ppm; DMSO- d_6 : $\delta = 2.50$ ppm). The 13 C NMR (100 MHz) chemical shifts were given using CDCl₃ or DMSO- d_6 as the internal standard (CDCl₃: $\delta = 77.16$ ppm; DMSO- d_6 : $\delta = 39.52$ ppm). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected. Absorption spectra were obtained on HITACHI U-2910 spectrometer. Fluorescence spectra and absolute quantum yields were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer with a calibrated integrating sphere system.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. $Pd(OAc)_2$ was purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd. All syntheses and manipulations were carried out under air atmosphere. Biphenyl-2-carboxylic acid was prepared according to the literature procedures. [1] 2,3,4,5,6-Pentadeuteriobenzoic acid (benzoic- d_5 acid) was prepared according to the known procedure. [2]

II. Optimization of the synthesis of fluorenone

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with benzoic acid **1a** (0.2-0.4 mmol), benzene **2a** (0.8-10 mmol), catalyst (10 mol%), oxidant (3.0 equiv), ligand and acid under an air atmosphere. The resulting mixture was stirred for 5 min at room temperature, and then heated at 30-100 °C for 24 h. The resulting solution was cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to provide the desired product **3a**.

Table S1. Screening Catalyst^a

Entry	Catalyst	Yield (%) ^b
1	Cu(OAc) ₂ .H ₂ O	n.d.
2	$PdCl_2$	n.d.
3	$Pd(Ph_3)_4$	trace
4	$Pd(Ph_3)_2Cl_2$	n.d.
5	$Pd(OAc)_2$	45
6	$[Cp*RhCl_2]_2$	n.d.
7	$Pd(TFA)_2$	40
8	$Pd_2(dba)_3$	trace

^aReaction conditions: **1a** (0.2 mmol), **2a** (10 mmol), catalyst (10 mol%), Na₂S₂O₈ (3.0 equiv), TfOH (5.0 equiv) at 80 °C under an air atmosphere for 24 h. ^bYield of isolated product. TfOH = trifluoromethanesulfonic acid. TFA = trifluoroacetic acid. dba = dibenzylideneacetone.

Table S2. Screening Acid^a

Entry	Acid	Yield (%) ^b
1	HOAc	nd
2	TFA	nd
3	PivOH	nd
4	MSA	nd
5	$TsOH.H_2O$	20
6	TfOH	45
7^c	TfOH	38

^aReaction conditions: **1a** (0.2 mmol), **2a** (10 mmol), Pd(OAc)₂ (10 mol%), Na₂S₂O₈ (3.0 equiv), acid (5.0 equiv) at 80 °C under an air atmosphere for 24 h. ^bYield of isolated product. ^cTfOH (4.0 equiv). MSA = methanesulfonic acid. TsOH = p-toluenesulfonic acid. PivOH = trimethylacetic acid.

Table S3. Screening Oxidant^a

Entry	Oxidant	Yield (%) ^b
1	$K_2S_2O_8$	40
2	$\mathrm{Na_{2}S_{2}O_{8}}$	45
3	$(NH_4)_2S_2O_8$	35

4	AgOAc	20
5	Ag_2CO_3	trace.
6	$\mathrm{Ag_2O}$	30
7	$Cu(OAc)_2$	n.d.
8	$PhI(OAc)_2$	n.d.
9	BQ	n.d.
10	$CuCl_2$	n.d.

^aReaction conditions: **1a** (0.2 mmol), **2a** (10 mmol), Pd(OAc)₂ (10 mol%), oxidant (3.0 equiv), TfOH (5.0 equiv) at 80 °C under an air atmosphere for 24 h. ^bYield of isolated product. BQ = benzoquinone.

Table S4 Screening Temperature^a

Entry	T (°C)	Yield (%) ^b
1	30	nd
2	60	trace
3	70	35
4	80	45
5	90	40
6	100	trace

^aReaction conditions: **1a** (0.2 mmol), **2a** (10 mmol), Pd(OAc)₂ (10 mol%), Na₂S₂O₈ (3.0 equiv), TfOH (5.0 equiv) under an air atmosphere for 24 h. ^bYield of isolated product.

Table S5. Screening Ligand^a

Entry	Ligand	Yield (%) ^b
1	Ac-Gly-OH	40
2	Ac-Ile-OH	45
3	Ac-Val-OH	35
4	Boc-Ile-OH	trace
5	Boc-Gly-OH	trace.
6	Ac-Leu-OH	30
7	PPh_3	n.d.
8^c	DMSO	60
9	MeCN	n.d.
10^d	Ac-Ile-OH/DMSO	78

^aReaction conditions: **1a** (0.2 mmol), **2a** (10 mmol), Pd(OAc)₂ (10 mol%), Na₂S₂O₈ (3.0 equiv), TfOH (5.0 equiv), ligand at 80 °C under an air atmosphere for 24 h. ^bYield of isolated product.

^cDMSO (2.0 equiv). ^dAc-Ile-OH (20mol%), DMSO (2.0 equiv). Ac-Gly-OH = 2-acetamidoacetic acid. Ac-Ile-OH = 2-acetamido-3-methylpentanoic acid. Ac-Leu-OH = 2-acetamido-4-methylpentanoic acid. Ac-Val-OH = 2-acetamido-3-methylbutanoic acid. Boc-Gly-OH = 2-((tert-butoxycarbonyl)amino)acetic acid. Boc-Ile-OH = 2-((tert-butoxycarbonyl)amino)-3-methylpentanoic acid. DMSO = dimethyl sulfoxide.

Table S6. Screening the Amount of Benzene^a

Entry	1a (mmol)	2a (mmol)	Yield (%) ^b
1	0.2	~10.0 (1.0 ml)	78
2	0.2	~5.0 (0.5 ml)	79
3	0.2	~2.0 (0.2 ml)	75
4	0.2	~1.0 (0.1 ml)	75
5	0.4	1.6 (0.15 ml)	82

^aReaction conditions: **1a** (0.2~0.4 mmol), **2a** (1.0~10.0 mmol), Pd(OAc)₂ (10 mol%), Ac-Ile-OH (20 mol%), Na₂S₂O₈ (3.0 equiv), TfOH (5.0 equiv) under an air atmosphere for 24 h. ^bYield of isolated product.

III. General procedure for the synthesis of fluorenones

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with benzoic acids (0.4 mmol), arenes (1.6 mmol, 4.0 equiv), Pd(OAc)₂ (10 mol%), Na₂S₂O₈ (3.0 equiv), Ac-Ile-OH (0.2 equiv), DMSO (2.0 equiv) and HOTf (2.0 mmol, 5 equiv) under an air atmosphere. The resulting mixture was stirred for 5 min at room temperature, and then heated at 80 °C for 24 h. The resulting solution was cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

IV. Mechanism study

1. Kinetic isotope experiments

COOH

+

Pd(OAC)₂ (10 mol%), Ac lie OH (20 mol%)

Na₂S₂O₈ (3'0 equiv), DMSO (2'0 equiv)

TfOH (5'0 equiv), 80 °C' 12 h

3a

37%

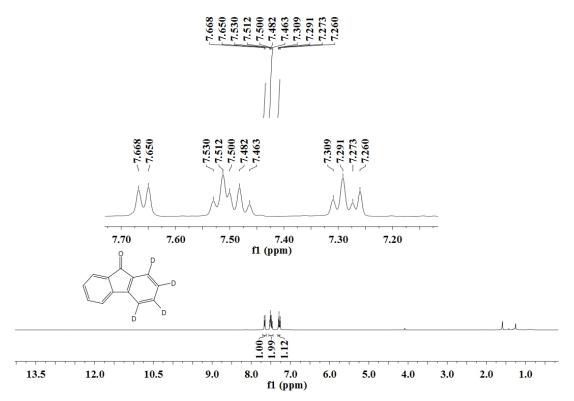
(S1)

Pd(OAC)₂ (10 mol%), Ac lie OH (20 mol%)

Na₂S₂O₈ (3'0 equiv), DMSO (2'0 equiv)

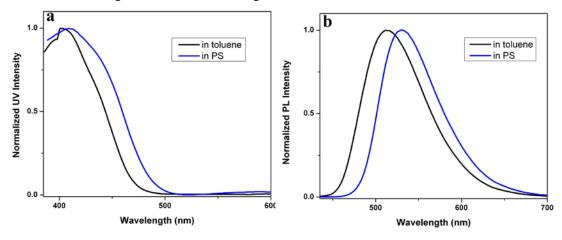
TfOH (5'0 equiv), DMSO (2'0 equiv)

TfOH (5'0 equiv), 80 °C' 12 h


$$[D_4]$$
 3a

 $K_H/K_D = 1'0$

37%


Two sets of reactions were carried out in a parallel manner. In each case benzene was allowed to react with benzoic acid and 2,3,4,5,6-pentadeuteriobenzoic acid (benzoic- d_5 acid), respectively. The sealed tubes were screw-capped and heated to 80 °C (oil bath). After being stirred for 12 h, the resulting solution was cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired $\bf 3a$ and $\bf [D_4]$ - $\bf 3a$ as yellow solid.

Two sets of reactions were carried out in a parallel manner. In each case benzoic acid was allowed to react with benzene and benzene- d_6 , respectively. The sealed tubes were screw-capped and heated to 80 °C (oil bath). After being stirred for 12 h, the resulting solution was cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product $\bf 3a$ and $\bf [D_4]$ - $\bf 3a$ as yellow solid.

Figure. S1. Copy of ¹H NMR spectra of [D₄]-3a.

V. UV-Vis absorption and emission spectra of 6.

Figure S2. (a) UV-Vis absorption spectra of **6** in toluene $(5.0 \times 10^{-5} \text{ M})$ and in PS film (5.0 wt%); (b) Emission spectra of **6** in toluene $(5.0 \times 10^{-5} \text{ M})$ and in PS film (5.0 wt%).

VI. Experimental data for the described substances.

9H-Fluoren-9-one (3a)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 50/1, v/v) afforded the desired product as a yellow solid (59.0 mg, 82%). M.p.: 83-85 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.29 (t, J = 7.2 Hz, 2H), 7.48 (t, J = 7.2 Hz, 2H), 7.52 (d, J = 7.2 Hz, 2H), 7.66 (d, J = 7.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 120.4, 124.4, 129.2, 134.2, 134.8, 144.5, 194.1 ppm. HRMS (ESI⁺): calcd for C₁₃H₈NaO [M+Na]⁺ 203.0473, found 203.0469.

1-Methoxy-9*H*-fluoren-9-one (3b)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (67.2 mg, 80%). M.p.: 138-139 °C. 1 H NMR (400 MHz, CDCl₃): δ = 3.98 (s, 3H), 6.82 (d, J = 8.4 Hz, 1H), 7.12 (d, J = 7.2 Hz, 1H), 7.28 (t, J = 7.2 Hz, 1H), 7.42-7.49 (m, 3H), 7.64 (d, J = 7.2 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 56.1, 113.0, 113.1, 120.2, 120.3, 124.0, 129.3, 134.0, 134.6, 136.9, 143.3, 146.6, 158.4, 192.1 ppm. HRMS (ESI⁺): calcd for $C_{14}H_{10}NaO_{2}$ [M+Na]⁺ 233.0578, found 233.0576.

1-Methyl-9*H*-fluoren-9-one (3c)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (59.0 mg, 76%). M.p.: 98-100 °C. 1 H NMR (400 MHz, CDCl₃): δ = 2.63 (s, 3H), 7.04 (d, J = 6.4 Hz, 1H), 7.28 (td, J = 7.2 Hz, J = 0.8 Hz, 1H), 7.31-7.36 (m, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 7.2 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 18.0, 118.0, 120.2, 124.0, 129.0, 131.0, 132.0, 134.1, 134.5, 139.6, 144.0, 144.9, 195.3 ppm.

HRMS (ESI $^+$): calcd for $C_{14}H_{10}NaO$ [M+Na] $^+$ 217.0629, found 217.0625.

1-Chloro-9H-fluoren-9-one (3d)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (69.5 mg, 81%). M.p.: 138-140 °C. 1 H NMR (400 MHz, CDCl₃): δ = 7.22 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.49-7.55 (m, 2H), 7.69 (d, J = 7.6 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 118.8, 120.5, 124.6, 129.6, 129.8, 131.1, 132.8, 134.0, 134.9, 135.4, 142.7, 146.6, 191.0 ppm. HRMS (ESI⁺): calcd for $C_{13}H_7CINaO$ [M+Na]⁺ 237.0083, found 237.0089.

1-Fluoro-9*H*-fluoren-9-one (3e)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (64.2 mg, 81%). M.p.: 112-114 °C. 1 H NMR (400 MHz, CDCl₃): δ = 6.95 (t, J = 8.4 Hz, 1H), 7.32-7.36 (m, 2H), 7.46-7.56 (m, 3H), 7.69 (d, J = 7.2 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 116.52, 116.55, 117.6, 117.8, 120.8, 124.7, 129.8, 134.1, 134.8, 137.1, 137.2, 143.5, 143.6, 146.51, 146.55, 158.2, 160.8, 190.3 ppm. HRMS (ESI⁺): calcd for C₁₃H₈FO [M+H]⁺ 199.0559, found 199.0556.

2-Methyl-9*H*-fluoren-9-one (3f)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h.

Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (58.2 mg, 75%). M.p.: 93-95 °C. 1 H NMR (400 MHz, CDCl₃): δ = 2.38 (s, 3H), 7.24-7.26 (m, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.44-7.47 (m, 3H), 7.63 (d, J = 7.2 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 21.5, 120.1, 120.3, 124.4, 125.2, 128.7, 134.4, 134.6, 134.8, 135.3, 139.4, 142.0, 144.8, 194.4 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₁O [M+H]⁺ 195.0810, found 195.0808.

2-Methoxy-9*H*-fluoren-9-one (3g)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (61.3 mg, 73%). M.p.:78-80 °C. 1 H NMR (400 MHz, CDCl₃): δ = 3.92 (s, 3H), 7.04 (d, J = 8.0 Hz, 1H), 7.24-7.32 (m, 2H), 7.45-7.51 (m, 3H), 7.66 (d, J = 7.2 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 55.9, 109.5, 119.7, 120.4, 121.5, 124.5, 128.0, 134.5, 135.0, 136.1, 137.1, 145.0, 161.0, 194.0 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₀NaO₂ [M+Na]⁺ 233.0578, found 233.0581.

2-Bromo-9H-fluoren-9-one (3h)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (81.9 mg, 79%). M.p.: 138-140 °C. 1 H NMR (400 MHz, CDCl₃): δ = 7.31-7.35 (m, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.50-7.51 (m, 2H), 7.61 (d, J = 7.6 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.77 (s, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 120.6, 121.9, 123.0, 124.7, 127.7, 129.6, 133.8, 135.2, 135.9, 137.2, 143.1, 143.8, 192.5 ppm. HRMS (ESI⁺): calcd for

C₁₃H₇BrNaO [M+Na]⁺ 280.9578, found 280.9584.

2-Chloro-9H-fluoren-9-one (3i)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (64.2 mg, 75%). M.p.: 122-124 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.32 (m, 1H), 7.45 (s, 2H), 7.50 (d, J = 4.0 Hz, 2H), 7.62 (s, 1H), 7.66 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 120.6, 121.5, 124.8, 124.9, 129.5, 134.1, 134.3, 135.19, 135.24, 135.8, 142.7, 143.8, 192.6 ppm. HRMS (ESI⁺): calcd for C₁₃H₇ClNaO [M+Na]⁺ 237.0083, found 237.0087.

3-Tert-butyl-9*H*-fluoren-9-one (3j)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow liquid (68.9 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ = 1.38 (s, 9 H), 7.28 (t, J = 7.2 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.54-7.55 (m, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.3, 35.7, 117.7, 120.2, 124.3, 126.2, 129.0, 132.0, 134.6, 134.9, 144.71, 144.72, 159.2, 193.9 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₇O [M+H]⁺ 237.1279, found 237.1254.

3-Phenyl-9*H*-fluoren-9-one (3k)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 40/1, v/v) afforded the desired product as a yellow solid (59.4 mg, 58%). M.p.: 99-101 °C. 1 H NMR (400 MHz, CDCl₃): δ = 7.32 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.48-7.53 (m, 4H), 7.58 (d, J = 7.2 Hz, 1H), 7.65-7.69 (m, 3H), 7.72-7.74 (m, 2H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 119.4, 120.4, 124.4, 124.9, 127.3, 128.1, 128.6, 129.1, 129.4, 133.1, 134.8, 140.3, 144.2, 145.3, 148.0, 193.7 ppm. HRMS (ESI⁺): calcd for C₁₉H₁₃O [M+H]⁺ 257.0966, found 257.0962.

11*H*-Benzo[*b*]fluoren-11-one (3l)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (48.7mg, 53%). M.p.: 143-145 °C. 1 H NMR (400 MHz, CDCl₃): $\delta = 7.35$ (t, J = 7.2 Hz, 1H), 7.47 (t, J = 7.2 Hz, 1H), 7.53-7.58 (m, 2H), 7.71 (d, J = 7.6 Hz, 1H), 7.75 (d, J = 7.2 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.86 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 8.17(s, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): $\delta = 119.2$, 121.1, 124.6, 125.8, 127.1, 128.9, 129.1, 129.3, 131.0, 133.0, 133.8, 135.2, 136.3, 137.1, 138.5, 145.0, 193.3 ppm. HRMS (ESI⁺): calcd for $C_{17}H_{10}NaO$ [M+Na]⁺ 253.0629, found 253.0627.

7*H*-Benzo[*de*]anthracen-7-one (3m)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (50.6 mg, 55%). M.p.: 165-167 °C. 1 H NMR (400 MHz, CDCl₃): δ = 7.57 (t, J = 7.6 Hz, 1H), 7.71 (t, J = 8.0 Hz, 1H),

7.74-7.82 (m, 2H), 8.03 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 8.0 Hz, 1H), 8.37 (d, J = 8.0 Hz, 1H), 8.49 (d, J = 7.6 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 8.78 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 123.2$, 124.3, 126.7, 126.8, 127.1, 128.1, 128.3, 128.5, 128.7, 130.0, 130.4, 131.3, 133.2, 133.5, 135.3, 136.4, 184.1 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₀NaO [M+Na]⁺ 253.0629, found 253.0632.

1-Methoxy-3-chloro -9*H*-fluoren-9-one (3n)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 10/1, v/v) afforded the desired product as a yellow solid (51.9 mg, 55%). M.p.: 145-147 °C. 1 H NMR (400 MHz, CDCl₃): δ = 3.98 (s, 3H), 6.84 (s, 1H), 7.14 (s, 1H), 7.32-7.36 (m, 1H), 7.48 (d, J = 4.0 Hz, 2H), 7.66 (d, J = 7.2 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 56.4, 113.5, 113.9, 118.8, 120.5, 124.2, 130.0, 134.1, 134.8, 142.2, 142.7, 147.9, 158.6, 190.8 ppm. HRMS (ESI⁺): calcd for C₁₄H₉ClNaO₂ [M+Na]⁺ 267.0189, found 267.0186.

1,3-Dimethyl-9*H*-fluoren-9-one (30)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (49.9 mg, 60%). M.p.: 108-110 °C. 1 H NMR (400 MHz, CDCl₃): δ = 2.37 (s, 3H), 2.58 (s, 3H), 6.84 (s, 1H), 7.16 (s, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.42-7.47 (m, 2H), 7.60 (d, J = 6.8 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 17.9, 22.1, 119.0, 119.9, 123.8, 128.8, 128.9, 132.4, 134.1, 135.0, 139.5, 143.8, 145.1, 145.3, 194.8 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃O [M+H]⁺ 209.0966, found 209.0963.

1-Methyl-2-chloro-9*H*-fluoren-9-one (3p)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 20/1, v/v) afforded the desired product as a yellow solid (64.0 mg, 70%). M.p.: 140-142 °C. 1 H NMR (400 MHz, CDCl₃): δ = 2.69 (s, 3H), 7.29 (d, J = 7.6 Hz, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.47-7.50 (m, 2H), 7.63 (d, J = 7.6 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 14.0, 118.7, 120.1, 124.3, 129.2, 132.3, 134.18, 134.21, 134.8, 136.5, 137.9, 143.0, 143.4, 194.1 ppm. HRMS (ESI $^{+}$): calcd for C₁₅H₉ClNaO [M+Na] $^{+}$ 251.0240, found 251.0219.

8-Methoxy-1,4-dimethyl-9*H*-fluoren-9-one (4a)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 10/1, v/v) afforded the desired product **4a** as a yellow solid (68.5 mg, 72%). M.p.: 113-115 °C. 1 H NMR (400 MHz, CDCl₃): δ = 2.54 (s, 3H), 2.59 (s, 3H), 3.98 (s, 3H), 6.84 (d, J = 8.8 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 7.24(d, J = 7.6 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 17.7, 20.4, 56.0, 112.5, 116.2, 120.6, 131.1, 131.4, 132.0, 136.31, 136.32, 136.8, 141.3, 147.1, 158.3, 193.9 ppm. HRMS (ESI $^{+}$): calcd for C₁₆H₁₄NaO₂ [M+Na] $^{+}$ 261.0891, found 261.0893.

1,4-Difluoro-8-methoxy-9*H*-fluoren-9-one (4b)

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with 1b (60.8 mg, 0.4 mmol), arene **2c** (4.0 equiv, 1.6 mmol), Pd(OAc)₂ (0.04 mmol, 10 mol%), Na₂S₂O₈ (3.0 equiv), Ac-Ile-OH (0.2 equiv), MeCN (2.0 equiv) and TfOH (2.0 mmol, 5.0 equiv) under an air atmosphere (the order is very important, arene 2c should be added last). The resulting mixture was stirred for 5 min at room temperature, and then heated at 80 °C for the indicated time. The resulting solution was cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1, v/v) to provide the desired product **4b** as a vellow solid (64.2 mg, 65%). M.p.: 163-165 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.99 (s, 3H), 6.85-6.92 (m, 1H), 7.05 (d, J = 6.8 Hz, 1H), 7.28-7.34 (m, 1H), 7.43-7.53 (m, 2H) ppm. 13 C NMR (100 MHz, CDCl₃): $\delta = 56.1$, 109.9, 110.1, 113.1, 113.56, 113.58, 113.7, 113.8, 114.0, 117.0, 117.1, 117.3, 117.5, 120.27, 120.29, 120.48, 120.52, 120.56, 120.60, 130.89, 130.92, 130.94, 130.97, 137.3, 137.4, 140.11, 140.14, 140.19, 140.22, 144.59, 144.61, 144.63, 150.0, 150.1, 152.5, 152.6, 153.0 153.2, 155.6, 155.7, 158.5, 189.4 ppm. HRMS (ESI⁺): calcd for $C_{14}H_9F_2O_2$ [M+H]⁺ 247.0571, found 247.0575.

6,7-Difluoro-1-methoxy-9*H*-fluoren-9-one (4c)

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **1b** (60.8 mg, 0.4 mmol), arene **2d** (4.0 equiv, 1.6 mmol), Pd(OAc)₂ (0.04 mmol, 10 mol%), Na₂S₂O₈ (3.0 equiv), Ac-Ile-OH (0.1 equiv), MeCN (2.0 equiv) and TfOH (2.0 mmol, 5.0 equiv) under an air atmosphere (the order is very important, arene should be added last). The resulting mixture was stirred for 5 min at room temperature, and then heated at 80 °C for the indicated time. The resulting solution was cooled to

ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1, v/v) to provide the desired product **4c** as a yellow solid (61.3 mg, 62%). M.p.: 163-165 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.99 (s, 3H), 6.86 (d, J = 8.8 Hz, 1H), 7.05 (d, J = 7.2 Hz, 1H), 7.26-7.31 (m, 1H), 7.44 (d, J = 6.8 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 56.1, 109.9, 110.1, 113.1, 113.53, 113.55, 113.6, 113.72, 113.74, 120.2, 120.3, 130.87, 130.91, 130.93, 130.96, 137.3, 140.10, 140.13, 140.17, 140.21, 144.6, 150.0, 150.1, 152.5, 152.6, 153.0, 153.2, 155.6, 155.7, 158.5, 189.3 ppm. HRMS (ESI⁺): calcd for C₁₄H₈F₂NaO₂ [M+Na]⁺ 269.0390, found 269.0392.

8-Methoxy-1,3-dimethyl-9*H*-fluoren-9-one (4d)

Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 10/1, v/v) afforded the desired product **4d** as a yellow solid (58.1 mg, 61%). M.p.: 148-150 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.33$ (s, 3H), 2.53 (s, 3H), 3.98 (s, 3H), 6.81 (d, J = 8.4 Hz, 1H), 7.04 (s, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.34 (s, 1H), 7.43(t, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.3$, 21.2, 56.0, 112.3, 116.0, 120.5, 122.5, 133.3, 135.4, 136.8, 137.4, 138.3, 139.2, 147.9, 158.4, 192.7 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₄NaO₂ [M+Na]⁺ 261.0891, found 261.0890.

2-Chloro-8-methoxy-1,3-dimethyl-9*H*-fluoren-9-one (4e)

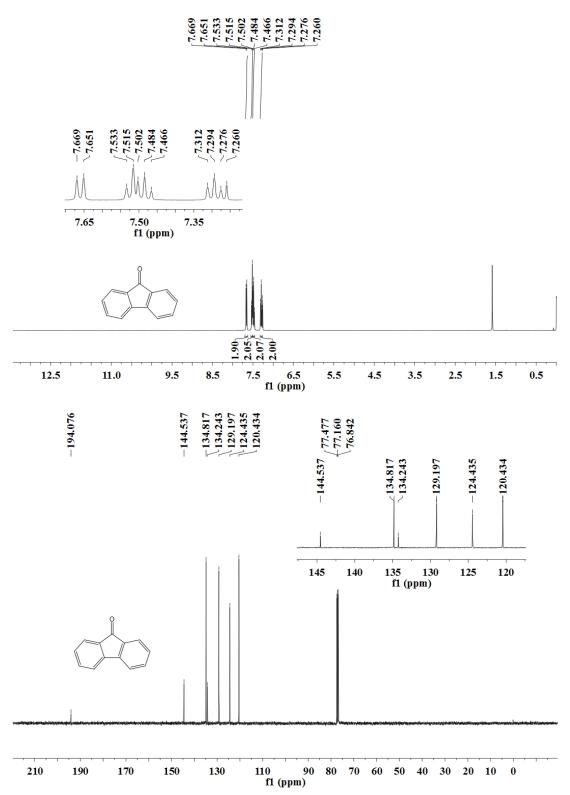
A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **1b** (60.8 mg, 0.4 mmol), arene **2f** (4.0 equiv, 1.6 mmol), Pd(OAc)₂ (0.04 mmol, 10

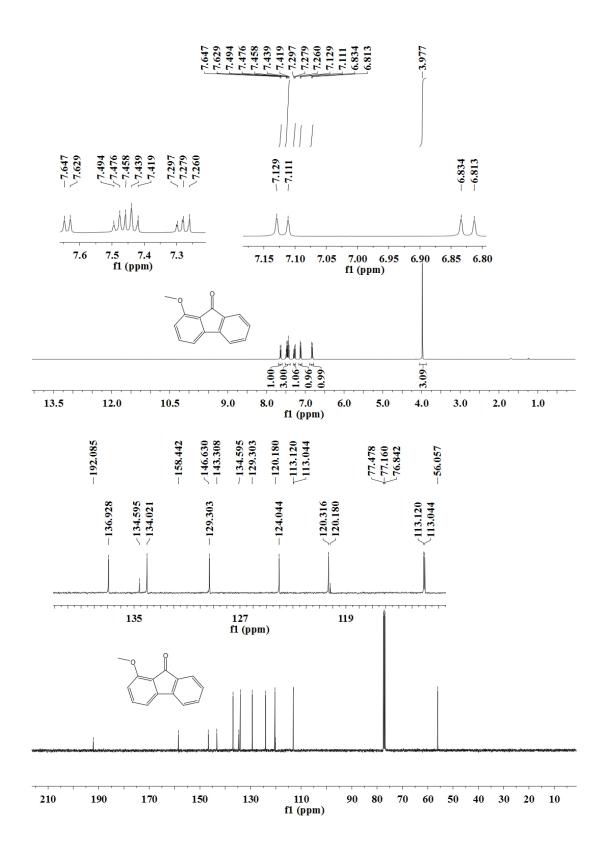
mol%), Na₂S₂O₈ (3.0 equiv), Ac-Ile-OH (0.2 equiv), MeCN (2.0 equiv) and TfOH (2.0 mmol, 5.0 equiv) under an air atmosphere (the order is very important, arene should be added last). The resulting mixture was stirred for 5 min at room temperature, and then heated at 80 °C for the indicated time. The resulting solution was cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1, v/v) to provide the desired product **4e** as a yellow solid (76.2 mg, 70%). M.p.: 118-120 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.42 (s, 3H), 2.68 (s, 3H), 3.97 (s, 3H), 6.81 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 7.22 (s, 1H), 7.42 (t, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 22.0, 56.0, 112.6, 113.0, 120.3, 120.6, 130.3, 136.6, 136.7, 137.8, 141.7, 141.8, 145.2, 158.3, 192.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₄ClO₂ [M+H]⁺ 273.0682, found 273.0678.

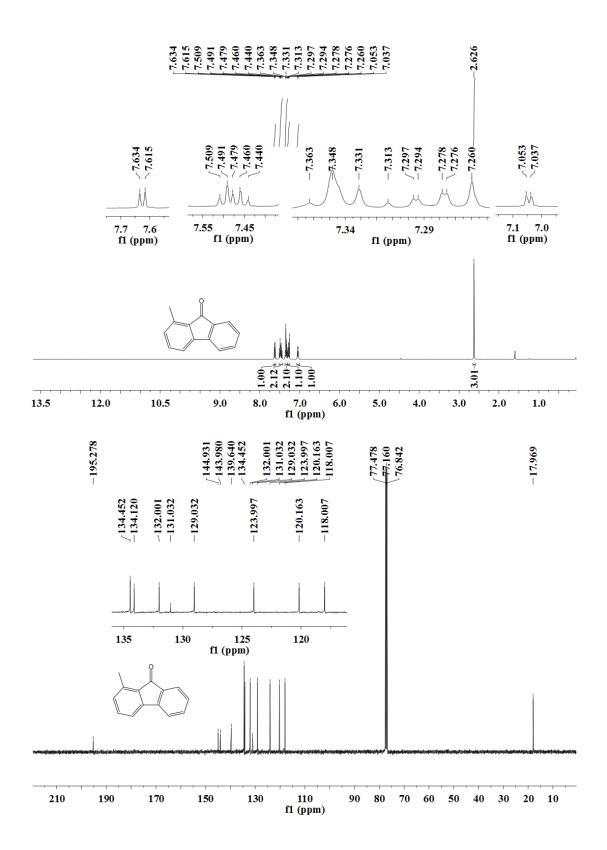
1-Methoxy-7-methyl-9*H*-fluoren-9-one (4f)

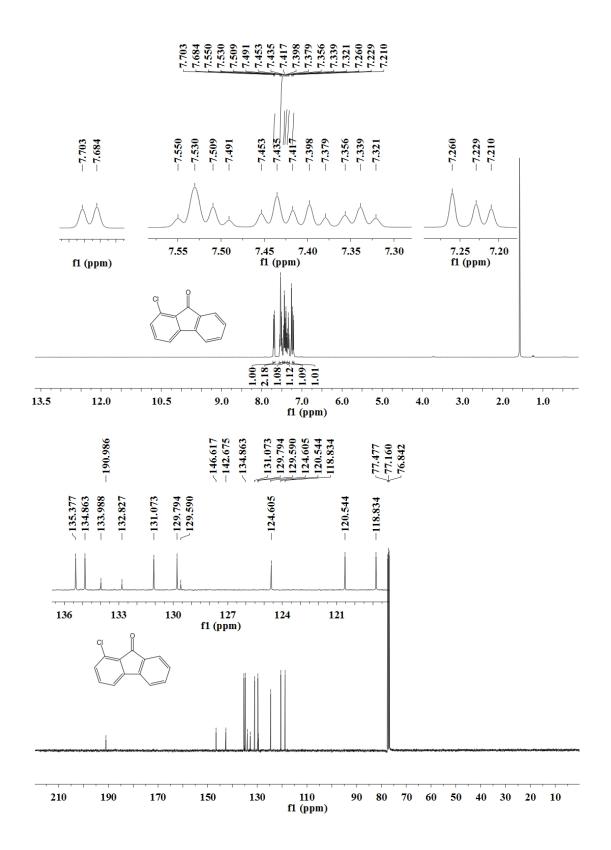
Following the general procedure, the reaction mixture was heated at 80 °C for 24 h. Purification via silica gel column chromatography (petroleum ether/EtOAc = 10/1, v/v) afforded the desired product **4f** as a yellow solid (50.2 mg, 56%). M.p.: 128-130 °C. 1 H NMR (400 MHz, CDCl₃): δ = 2.37 (s, 3H), 3.98 (s, 3H), 6.80 (d, J = 8.4 Hz, 1H), 7.09 (d, J = 7.2 Hz, 1H), 7.25 (d, J = 8.8 Hz, 1 H), 7.37 (d, J = 7.2 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.47 (s, 1H) ppm. 13 C NMR (100 MHz, CDCl₃): δ = 21.5, 56.1, 112.7, 112.8, 120.2, 120.3, 124.8, 134.5, 134.9, 136.9, 139.6, 140.7, 146.9, 158.4, 192.4 ppm. HRMS (ESI $^{+}$): calcd for C₁₅H₁₂NaO₂ [M+Na] $^{+}$ 247.0735, found 247.0742.

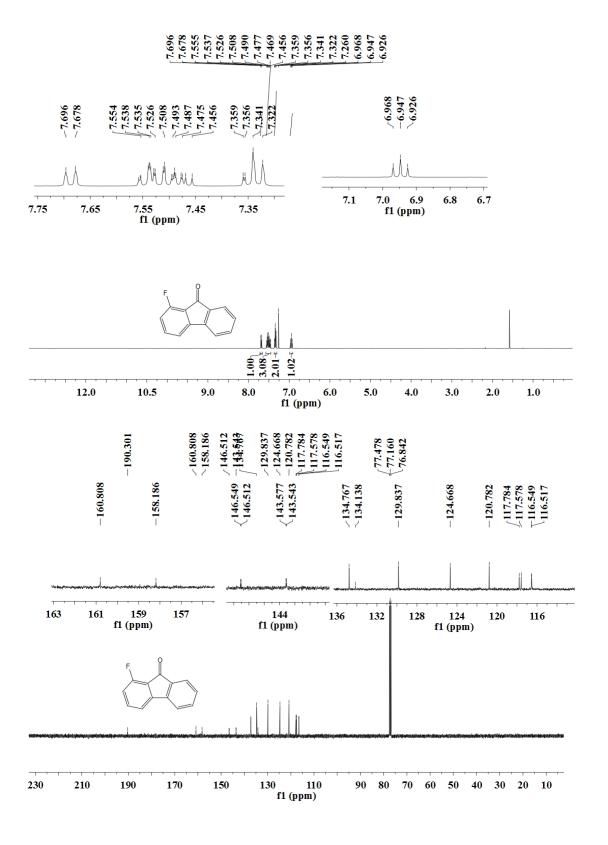
3-(4-(Diphenylamino)phenyl)-1-methoxy-9H-fluoren-9-one (6)


A flame-dried Schlenk test tube with a magnetic stirring bar was charged with **3n** (73.4 mg, 0.3 mmol), 4-(diphenylamino)phenylboronic acid (171.6 mg, 0.6 mmol), Pd(OAc)₂ (10 mol%), XPhos (20 mol%), K₃PO₄ (3.0 equiv) and THF (4 ml) under an N₂ atmosphere. The reaction mixture was stirred at 100 °C for 24 h. The reaction mixture was then cooled to ambient temperature, diluted with 10-20 mL of EtOAc, filtered through a celite pad, and washed with 10-20 mL of EtOAc. Organic solvent was removed under reduced pressure. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 5/1, v/v) to afford the desired product **6** as a yellow solid (70.7 mg, 52%). M.p.: 78-80 °C. ¹H NMR (400 MHz, CDCl₃): δ = 4.05 (s, 3H), 6.96 (s, 1H), 7.08 (t, J = 7.2 Hz, 2H), 7.16 (d, J = 8.0 Hz, 5H), 7.28-7.34 (m, 6H), 7.45-7.56 (m, 5H), 7.67 (d, J = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 56.1, 111.0, 111.8, 120.2, 123.2, 123.7, 124.0, 124.5, 125.0, 128.1, 129.4, 129.6, 133.5, 133.9, 135.3, 143.1, 147.2, 147.4, 148.7, 149.9, 158.7, 191.6 ppm. HRMS (ESI⁺): calcd for C₃₂H₂₃NNaO₂ [M+Na]⁺ 476.1626, found 476.1632.


VII. References


[1] N.P. Ramirez, I. Bosque, J. C. Gonzalez-Gomez, Org. Lett., 2015, 17, 4550.


[2] L. Ackermann, A.V. Lygin, N. Hofmann, Angew. Chem. Int. Ed., 2011, 50, 6379.


VIII. Copies of ¹H and ¹³C NMR spectra.

