Supporting Information

Structural Features and Molecular Aggregations of Designed Triple-Stranded β-Sheets in Single Crystals

Anuapm Bandyopadhyay, Rajkumar Misra and Hosahudya N. Gopi*

Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India. E-mail: <u>hn.gopi@iiserpune.ac.in</u>

List of contents	S1
Schematic representation of P1, P2 and P3	S2
2D NMR Spectra for (P1).	S3
X-ray structures P1 and P2	S5
Torsional variables of P1 and P2	S7
Hydrogen bonding parameters of P1	S9
Hydrogen bonding parameters of P2	S10
Comparison of intramolecular H-bond distances (Å) between P3 and P1	S11
Comparison of the atom-to-atom distances (Å) across the anti-parallel β -strands	
between P3 and P1	S 11
CHOH bond parameters of P1	S12
CHOH bond parameters of P2	
List of type I' β -hairpin structures derived from the different protein structures	S14
Superposition of the β -hairpins with type I' β -turns form protein structures over P1	S15
CD spectrum of P1 and P2	S 16
Stacking of P7 in single crystals	S17
Crystal structure analysis of P1 and P2	S17
Temperature dependent NMR of peptide P1	S31
Chemical shifts Table of peptide P1	S32
General Experimental Details	S33
¹ H NMR, and MALDI-TOF Mass Data of P1 and P2 and all monomer	S39
References	S58

Scheme S1: Schematic representation of three-stranded β -sheet P1 and P2 and β -hairpin P3

a)

Figure S1: Partial ROESY spectra of P1 showing cross-strand NOEs of a) NH \leftrightarrow NH, and b) vinylogous C β H \leftrightarrow C β H

Figure S2: The observed NOEs of the peptide **P1** in the ROESY are schematically shown by double headed arrows, blue for inter-residue and red for intra-residue

Figure S3. The ORTEP diagram of Ac-Val-dgL-Val-^DPro-Gly-Leu-dgV-Val-Ala-^DPro-Gly-Leu-Val-dgL-Val-NH₂ (**P1**). H-atoms are not labeled for clarity.

Figure S4. The ORTEP diagram of Ac-Val-dgF-Val-^DPro-Gly-Leu-dgL-Val-Ala-^DPro-Gly-Leu-Val-dgF-Val-NH₂ (**P2**).

Resd.	ø	θ_1	θ_2	ψ	ω
Val1	-119	-	-	114	170
dgL2	-112	102	168	161	173
Val3	-147	-	-	139	162
^D Pro4	66	-	-	25	-177
Gly5	88	-	-	1	174
Leu6	-104	-	-	120	168
dgV7	-102	104	-170	-178	-175
Val8	-127	-	-	116	-173
Ala9	-152	-	-	137	179
^D Pro10	57	-	-	30	-178
Gly11	86	-	-	-15	-174
Leu12	-80	-	-	138	171
Val13	-100	-	-	103	-176
dgL14	-111	94	-177	171	176
Val15	-98	-	-	136	-

Table S1: Torsional variables of three-stranded β -sheet Ac-Val-dgL-Val-^DPro-Gly-Leu-dgV-Val-Ala-^DPro-Gly-Leu-Val-dgL-Val-NH₂ (**P1**).

Resd.	¢	θ_1	θ_2	ψ	ω
Val1	-129	-	-	112	174
dgF2	-115	108	-171	163	-168
Val3	-152	-	-	132	165
^D Pro4	58	-	-	35	178
Gly5	89	-	-	-4	177
Leu6	-105	-	-	114	177
dgL7	-102	115	-174	-178	-173
Val8	-133	-	-	107	-170
Ala9	-127	-	-	119	176
^D Pro10	55	-	-	28	-179
Gly11	99	-	-	-19	-173
Leu12	-90	-	-	132	177
Val13	-98	-	-	125	175
dgF14	-131	96	-179	-176	-177
Val15	-98	-	-	138	-

Table S2: Torsional variables of three-stranded β -sheet Ac-Val-dgF-Val-^DPro-Gly-Leu-dgL-Val-Ala-^DPro-Gly-Leu-Val-dgF-Val-NH₂ (**P2**).

Table S3: Hydrogen bonding parameters of three-stranded β -sheet Ac-Val-dgL-Val-^DPro-Gly-Leu-dgV-Val-Ala-^DPro-Gly-Leu-Val-dgL-Val-NH₂ (**P1**).

Туре	Donar	Acceptor	D····A	Н…А	D-H···A	D····O=C
	[D]	[A]	[Å]	[Å]	[deg]	[deg]
Intramol.	N1	09	2.85	1.99	176	156
Intermol.	N2	O14¶	2.78	1.98	157	169
Intramol.	N3	07	2.97	2.20	148	157
Pro	N4(Pro)					
Intermol.	N5	O12 [*]	2.71	1.97	144	168
Intramol.	N6	O4	2.96	2.13	159	128
Intramol.	N7	O15	2.98	2.17	155	157
Intramol.	N8	O2	2.79	1.96	161	154
Intramol.	N9	O13	3.09	2.32	148	146
Pro	N10(Pro)					
Intermol.	N11	O16 [#]	2.92	2.18	156	149
Intramol.	N12	O10	2.87	2.06	157	124
Intermol.	N13	01	2.88	2.04	164	164
Intramol.	N14	08	2.77	1.97	157	169
Intermol.	N15	O3§	3.00	2.15	172	175
Intramol.	N16	O6	2.91	2.06	167	165
Intermol.	N16	$O9^{\dagger}$	3.01	2.15	175	110

Intermol.; intramol.; intramolecular, #Symmetry equivalent x, y, 1+z, †Symmetry equivalent x, y, -1+z, ¶Symmetry equivalent -1+x, -1+y, z, §Symmetry equivalent 1+x, 1+y, 1+z, *Symmetry equivalent -1+x, -1+y, -1+z.

Table S4: Hydrogen bonding parameters of three-stranded β -sheet Ac-Val-dgF-Val-^DPro-Gly-Leu-dgL-Val-Ala-^DPro-Gly-Leu-Val-dgF-Val-NH₂ (**P2**).

Туре	Donar	Acceptor	D····A	Н…А	D-H···A	D····O=C
	[D]	[A]	[Å]	[Å]	[deg]	[deg]
Intramol.	N1	09	2.98	2.14	170	151
Intermol.	N2	014*	2.776	1.902	172	159
Intramol.	N3	07	2.99	2.14	168	152
Pro	N4(Pro)					
Intermol.	N5	012*	2.78	2.00	147	169
Intramol.	N6	O4	2.98	2.13	164	128
Intramol.	N7	O15	2.84	2.004	160	146
Intramol.	N8	O2	2.79	1.97	154	154
Intramol.	N9	O13	2.89	2.04	164	150
Pro	N10(Pro)					
Intermol.	N11	O16 [#]	2.82	2.04	146	151
Intramol.	N12	O10	2.92	2.07	160	125
Intermol.	N13	O1\$	2.89	2.04	164	150
Intramol.	N14	08	2.82	1.95	171	159
Intermol	N15	O3 ^{&}	2.98	2.10	173	172
Intramol	N16	O6	2.98	2.07	168	164

*Symmetry equivalent-1+x, y, z, \$Symmetry equivalent x, y, -1+z, #Symmetry equivalent -1+x, y, 1+z, &Symmetry equivalent 1+x, y, z,.

	β-hairpin P3		three-stranded β -sheet		Difference	Difference (P3
			P1		(P3 – P1)	- P1)
	D-H···A	D····A	D-H···A	D····A	D-H…A (Å)	D…A (Å)
	(Å)	(Å)	(Å)	(Å)		
Val1NH…O=CVal8	2.080	2.933	1.996	2.855	0.084	0.078
Val1C=O…HNVal8	2.213	2.929	1.960	2.791	0.253	0.128
Val3NH…O=CLeu6	2.246	3.069	2.206	2.972	0.040	0.097
Val3C=O…HNLeu6	2.111	2.880	2.139	2.960	-0.028	-0.08

Table S5: Comparison of intramolecular H-bond distances (Å) between P1 and P3

Table S6: Comparison of the atom-to-atom distances (Å) across the anti-pa	arallel β-strands
between P1 and P3	

Cross-strand backbone	β-hairpin P3	three-stranded β-	Difference (P3
Atom↔Atom	(Å)	sheet P1	- P1) (Å)
		(Å)	
Val1N↔C(O)Val8	4.120	4.026	0.094
$Val1C_{\alpha} \leftrightarrow C_{\alpha}Val8$	5.097	5.072	0.015
Val1C(O)↔NVal8	4.102	3.945	0.157
$dgL2N\leftrightarrow C(O)dgV7$	5.721	5.523	0.198
$dgL2C_{\gamma} \leftrightarrow C_{\alpha} dgV7$	4.751	4.477	0.274
$dgL2C_{\beta} \leftrightarrow C_{\beta}dgV7$	5.900	5.608	0.292
$dgL2C_{\alpha} \leftrightarrow C_{\gamma} dgV7$	4.937	4.502	0.435
dgL2C(O)↔NdgV7	5.791	5.601	0.190
Val3N↔C(O)Leu6	4.113	4.153	-0.040
$Val3C_{\alpha}\leftrightarrow C_{\alpha}Leu6$	5.024	5.407	-0.383
Val3C(O)↔NLeu6	3.887	3.849	0.038

Table S7: CH...O H-bonds parameters of three-stranded β -sheet Ac-Val-dgL-Val-^DPro-Gly-Leu-dgV-Val-Ala-^DPro-Gly-Leu-Val-dgL-Val-NH₂ (**P1**).

Туре	Donar	Acceptor	HA (Å)	D-H···A (degree)
Intramol.	C1	09	2.66	142
Intramol.	C39	02	2.44	135
Intramol.	C14	07	2.47	140
Intramol.	C29	O4	2.53	145
Intramol.	C68	O8	2.65	125
Intramol.	C28	O15	2.69	146
Intramol.	C75	O6	2.74	143
Intermol.	C73	O3	2.71	139
Intermol.	C3	07	2.76	140
Intermol.	C56	01	2.46	143

Table S8: CH....OH bonds parameters of three-stranded β -sheet Ac-Val-dgF-Val-^DPro-Gly-Leu-dgL-Val-Ala-^DPro-Gly-Leu-Val-dgF-Val-NH₂ (**P1**).

Туре	Donar	Acceptor	HA (Å)	D-H…A (degree)
Intramol	C1	O9	2.554	147
Intramol.	C43	02	2.477	136
Intramol.	C17	07	2.489	141
Intramol.	C32	O4	3.002	125
Intramol.	C60	O10	2.731	133
Intramol.	C45	O13	2.332	150
Intramol.	C64	O10	2.538	145
Intramol.	C38	015	2.822	124
Intramol.	C80	O6	2.513	144
Intermol.	C78	03	2.704	138
Intermol.	C3	O14	2.826	138
Intermol.	C61	01	2.811	154

Table S9: List of type I' β -hairpin structures derived from the different protein structures to overlay on **P1**.

Proteins	PDB code	Residue numbers	Sequence
Actinidine	1AEC	170-177	GTEGGIDY
Aspartyl Proteinase	1APT	21-28	VTIGGTTL
Penicillopepsin			
Aspartyl Proteinase	1APT	58-65	VSISGYTA
Penicillopepsin			
Porcine pancreatic	1QNJ	201-208	CLVNGQYA
elastase			
Streptomyces griseus	1SGC	48-51	VSVNGVAH
protease A			
Alpha-lytic protease	1SSX	64-84	ARIGGAVV
Penicillopepsin	3APP	90-97	VTVGGVTA
Penicillopepsin	3APP	258-265	VSISGYTA
Phospholipase A ₂	1JIA	76-83	SWKNGTIV
Staphylococcal	3OSO	92-99	IYADGKMV
nuclease			

Figure S5: **A**. Superposition of β -hairpins with type I' β -turns form protein structures over three-stranded β -sheet **P1**. **B**. Side-view of the overlay.

Figure S6: Circular dichroism (CD) spectrum of **P1** (100 µM) in methanol.

Figure S7: Circular dichroism (CD) spectrum of P2 (100 µM) in methanol.

Figure S8: Vertical stacking of P3. Water molecules played crucial role in head-to-head interconnection of P3 molecules

Crystal structure analysis of (Ac-Val-dgLeu-Val-^DPro-Gly-Leu-dgVal-Val-Ala-^DPro-Gly-Leu-Val-dgLeu-Val-NH₂) P1

Crystals of peptide were grown by slow evaporation from a solution of methanol and water. A single crystal (0.18 × 0.14 × 0.11 mm) was mounted in a loop with a small amount of the mother liquor. The X-ray data were collected at 100 K temperature on a Bruker AXS SMART APEX II CCD Duo diffractometer using MoK_a radiation ($\lambda = 0.71073$ Å), ω -scans (2 $\theta = 56.56^{\circ}$), for a total number of 21007 independent reflections. Space group P1, a = 12.367(3), b = 13.818(3), c = 16.091(5) Å, $\alpha = 105.224(6)$, $\beta = 97.197(6)$, $\gamma = 113.827(4)$, V= 2342.2(10) Å³, Triclinic P, Z = 1 for chemical formula (C₇₉H₁₃₄N₁₆O₁₆), with one molecule in asymmetric unit; $\rho_{calcd} = 1.109$ g

cm⁻³, $\mu = 0.078$ mm⁻¹, F(000) = 848, $R_{int} = 0.0458$. The data integration and reduction were processed with SAINT software.¹ A multi-scan absorption correction was applied to the collected reflections. The structure was solved by the direct method using SHELXTL² and was refined on F2 by full-matrix least-squares technique using the SHELXL-2013² program package within the WINGX³ program. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located in successive difference Fourier maps, and they were treated as riding atoms using SHELXL default parameters. The structures were examined using the Adsym subroutine of PLATON⁴ to ensure that no additional symmetry could be applied to the models. During the refinement it was observed that, C10, C11 and C12 atoms are disordered with two site occupancy. A significant amount of time was invested to refine the disordered atoms anisotropically using constrains to fix them. 'dfix', and 'delu' restraint instructions were applied to the moiety for its geometry and atomic displacement parameters, and 'isor' restrain was applied to the big and non-spherical atoms. Furthermore, increasing refinement cycle with no. 80 found to be a better model constructed. In addition, we noticed that the guest molecules (two water molecules and one methanol molecule) in P1 are highly disordered and could not be modeled properly, so the diffused electron densities resulting from them were removed by the SQUEEZE routine in PLATON⁵ and the results were appended in the CIF files. Additionally, the squeeze output result is embedded bellow. After the final CIF file generation, the output Rvalue was 0.0640 (wR2= 0.1578) for 14462 observed reflections ($F_0 \ge 4\sigma$ ($|F_0|$)) and 1023 variables, S = 1.041. The largest difference peak and hole were 0.775 and -0.437 e Å³, respectively.

Squeeze output result:

- :: TITLE compound -P1
- :: CELL 12.3670 13.8180 16.0910 105.224 97.197 113.827 2342.2
- :: SPGR P1 Chiral
- :: Resd 1, SOF 1.000, Z 1, C79 H134 N16 O16
- :: Moiety_Formula = C79 H134 N16 O16
- :: Sum_Formula = C79 H134 N16 O16
- :: Formula_Weight = 1564.03 [Note: Based on SHELXL97 Atomic Weights]
- :: Formula_Z = 1
- :: SpaceGroup_Z = 1
- :: Formula_Z' = 1.000
- $:: mu(MoKa) = 0.78 \text{ cm} \cdot 1 = 0.078 \text{ mm} \cdot 1$
- :: Res.Scat. = 6×0.0001
- :: Friedif = 6
- :: Predicted Vol = 2147.5[2147.5] Ang³, 100[2]K
- :: VOID/SOLV Gridstep (Angstrom) (re)set to 0.20, Percent Memory = 0.9

van der Waals (or ion) Radii used in the Analysis

C H N O

 $1.70\; 1.20\; 1.55\; 1.52$

:: Note: VOID/SOLV/SQUEEZE is relatively compute intense and experimental

:: Total Potential Solvent Area Vol 147.5 Ang^3 per Unit Cell Vol 2342.2 Ang^3 [6.3%]

Note: Expected volumes for solvent molecules are:

A hydrogen bonded H2O-molecule 40 Ang^3

Small molecules (e.g. Toluene) 100-300 Ang^3

Values below for gridpoints and volumes in [] refer to areas where atom centers may reside.

Area #GridPoint VolPerc. Vol(A^3) X(av) Y(av) Z(av) Eigenvector(frac) Sig(Ang) _____ 1 10603[818] 3 68[5.3] 0.053 0.831 0.679 1 1.000-0.714 0.333 1.40 2-0.136 0.340 1.000 1.11 3-1.000-0.964-0.222 1.04 2 3611[89] 1 23[0.6] 0.427 0.057 1.011 1 0.537 0.076 1.000 0.90 2 1.000 0.622-0.007 0.78 3-0.234 1.000 0.386 0.73 3 1287[2] 0 8[0.0] 0.450 0.882 0.506 1 -0.006 1.000 0.866 0.60 2 1.000 0.325 0.276 0.55 3 0.335 1.000-0.663 0.54 4 1451[6] 0 9[0.0] 0.576 0.940 0.595 1 0.823-1.000-0.464 0.73 2 0.781 1.000-0.722 0.60 3 1.000 0.670 0.712 0.52 5 1222[2] 0 8[0.0] 0.628 0.098 0.940 1 1.000-0.107 0.300 0.58 $2 \ 0.488 \ 1.000 \ 0.549 \ 0.55$ 3-0.824-0.626 1.000 0.54 6 4678[61] 1 30[0.4] 0.798 0.550 0.836 1 0.261 1.000 0.160 1.46 2 1.000 0.167-0.247 0.73 3-0.712-0.287-1.000 0.65 Shortest Contacts within 4.5 Ang. (Excl. H) x y z _____ 1 0.053 0.831 0.679 C47 3.40; C11 3.55; C70 3.72; C40 4.11;

			,	,	/	
2	0.427 0.057 1.011	O 10	3.08; O5	3.08; C6	3.29; C48	3.45;
3	0.450 0.882 0.506	O 7	2.93; C30	3.11; C31	3.12; C5	3.14;

4	0.576 0.940 0.595	O2	2.89; N8	3.01; C5	3.05; C39	3.07;
5	0.628 0.098 0.940	N16	2.87; C77	2.95; C6	2.98; C59	3.02;
6	0.798 0.550 0.836	C12	2.86; C23	3.06; C22	2 3.25; C65	3.55;

:: Note: use CALC VOID (not CALC SOLV) for Packing Index.

Report the Distance from VOID-CG to Boundary in EV-Directions

Nr MinEV1 MaxEV1 MinEV2 MaxEV2 MinEV3 MaxEV3 MaxDist (Ang)

1 -2.74 3.26 -2.71 1.76 -2.43 2.30 3.26 2 -1.99 2.15 -1.80 1.84 -1.77 1.71 2.15 3 -1.28 1.28 -1.19 1.19 -1.21 1.21 1.30 4 -1.67 1.47 -1.23 1.28 -0.56 1.22 1.73 5 -1.30 1.25 -1.20 1.21 -1.22 1.25 1.31 $6 \ -2.70 \ \ 3.12 \ \ -1.67 \ \ 1.64 \ \ -1.43 \ \ 1.19 \ \ 3.12$:: ADP 02 $0.014 \quad 0.044 \quad 0.197 - RATIO(MAX/MIN) =$ 14.6 prolate $:: TRMX = 1.00 \ 0.00 \ 0.00 \ 0.00 \ 1.00 \ 0.00 \ 0.00 \ 1.00$:: CELL 12.367 13.818 16.091 105.224 97.197 113.827 :: Reflection Data are READ from File : platon.hkl - (OBS-Data) :: # Accepted Reflns Hmax Kmax Lmax 16 18 21 44436 :: :: A, B, C (Angstrom) = 12.367 13.818 16.091 :: NX, NY, NZ (SOLV-MAP) =60 72 84 :: NX, NY, NZ (FFT-MAP) =64 64 64 0.22 0.25 Angstrom :: Resolution (FFT-MAP) = (0.19

:: R1 = 0.377 for 30928 Refl. with I > 2 s(I) and
:: wR2 = 1.559 for 44436 reflections
:: S = 4.054

:: Number of Removed Systematic Extinctions = 0

:: Number of Non-extinction Reflections = 44436

:: Number of Missing Low Order Reflections = 12

:: Fo-scale =0.632673E+00 - SinT/L-Min = 0.20 for Fo/Fc-Scaling

:: Cycle = 1, R(F) = 0.10, Nref(Hemi) = 11555, R(F > 4SIGF) = 0.06 Nref = 6124

Unique Density Maxima in Enhanced Difference Map (CutOff level = 0.50 eA-3)

x y z (e/A^3) Shortest Contacts within 3.2 Ang. (Excl. H)

1 0.839 0.641 0.812 1.37 C12 2.42; 2 0.846 0.717 0.676 1.21 C12 2.25; C11 2.28; C10 2.71; O2 3.07; 3 0.425 0.060 0.032 1.02 void O5 2.90; O10 3.08; 4 0.951 0.792 0.655 0.98 void C11 2.69; 5 0.567 0.445 0.421 0.92 C9 1.59; C10 2.33; C8 2.45; C11 2.66; 6 0.671 0.538 0.407 0.88 C11 2.09; C9 2.55; C10 2.70; C8 2.97; 7 0.738 0.526 0.780 0.84 C12 1.99; 8 0.593 0.348 0.417 0.75 C9 2.35; C10 2.52; C11 3.10; 9 0.719 0.439 0.614 0.69 C10 1.49; C12 1.52; C11 2.64; C9 2.66;

Unique Density Minima in Enhanced Difference Map (CutOff level = -0.50 eA-3)

x y z (e/A^3) Shortest Contacts within 3.2 Ang. (Excl. H)

1 0.739 0.516 0.569 -0.54C10 0.61; C11 1.27; C12 1.58; C9 2.07;2 0.842 0.622 0.546 -0.53C11 0.65; C10 2.09; C12 2.80; C9 3.16;3 0.733 0.568 0.533 -0.50C11 0.57; C10 1.13; C9 1.95; C12 2.23;

Void X(av) Y(av) Z(av) Volume Ang^3 El-Count (e-) Vol/Electron Vol/Atom

1	0.053 0.831 0.679	68	5	13.4	107
2	0.427 0.057 1.011	23	1	20.4	163
3	0.450 0.882 0.506	8	1	15.6	125
4	0.576 0.940 0.595	10	1	14.7	118
5	0.628 0.098 0.940	8	0	40.5	324
6	0.798 0.550 0.836	30	2	14.4	115

Total (Positive) Electron Count in Voids/Cell = 10

Total (Fo-Fc)map Electron Count in Unit Cell = 0

VOID-Fo-Fc-Map: Rho(min) = -0.25, Rho(max) = 1.37, RhoCutOff = 0.00PeaksCloseToAtoms: Rho(min) = -0.54, Rho(max) = 0.92, RhoCutOff = 0.50

:: Fo-scale =0.633444E+00 - SinT/L-Min = 0.20 for Fo/Fc-Scaling

:: Cycle = 2, R(F) = 0.09, Nref(Hemi) = 11555, R(F > 4SIGF) = 0.05 Nref = 6124

Unique Density Maxima in Enhanced Difference Map (CutOff level = 0.50 eA-3)

x y z (e/A^3) Shortest Contacts within 3.2 Ang. (Excl. H)

```
1 0.838 0.642 0.813 2.56
                          C12 2.43;
2 0.856 0.737 0.672 2.28
                          C11 2.34; C12 2.51; C10 2.90; O2 3.01;
3 0.424 0.060 0.032 1.98 void O5 2.90; O10 3.07;
4 0.951 0.793 0.655 1.90 void C11 2.70;
5 0.739 0.533 0.780 1.43
                          C12 1.96;
6 0.567 0.446 0.421 0.89 C9 1.59; C10 2.32; C8 2.45; C11 2.66;
7 0.671 0.538 0.406 0.78 C11 2.10; C9 2.56; C10 2.71; C8 2.99;
8 0.595 0.349 0.415 0.77 C9 2.37; C10 2.53; C11 3.09;
9 0.720 0.439 0.613 0.65
                          C10 1.49; C12 1.53; C11 2.63; C9 2.66;
10 0.012 0.855 0.707 0.62 void C47 2.90;
11 0.065 0.934 0.686 0.55 void C70 3.09; C40 3.12; O8 3.15;
12 0.433 0.935 0.533 0.50 void C31 2.67; C30 3.07; C5 3.11;
13 0.796 0.643 0.616 0.50
                           C11 1.27; C10 1.72; C12 1.78; C9 2.78;
```

Unique Density Minima in Enhanced Difference Map (CutOff level = -0.50 eA-3)

x y z (e/A^3) Shortest Contacts within 3.2 Ang. (Excl. H)

1 0.738 0.516 0.566 -0.53C10 0.61; C11 1.24; C12 1.61; C9 2.05;2 0.656 0.515 0.559 -0.51C10 0.45; C9 1.11; C12 1.58; C11 1.67;

Void X(av) Y(av) Z(av) Volume Ang^3 El-Count (e-) Vol/Electron Vol/Atom

1 0.053 0.831 0.679	68	9	7.9	63
2 0.427 0.057 1.011	23	2	12.6	101

3	0.450 0.882 0.506	8	1	7.8	62
4	0.576 0.940 0.595	10	1	7.9	63
5	0.628 0.098 0.940	8	0	26.8	215
6	0.798 0.550 0.836	30	4	7.8	62

Total (Positive) Electron Count in Voids/Cell = 17

Total (Fo-Fc)map Electron Count in Unit Cell = 10

VOID-Fo-Fc-Map:	Rho(min) =	-0.25, Rho(max) =	2.56, RhoCutOff = 0.00
PeaksCloseToAtoms	s: Rho(min) =	-0.53, Rho(max) =	1.43, RhoCutOff = 0.50

:: Fo-scale =0.633348E+00 - SinT/L-Min = 0.20 for Fo/Fc-Scaling

:: Cycle = 3, R(F) = 0.09, Nref(Hemi) = 11555, R(F > 4SIGF) = 0.05 Nref = 6124

Unique Density Maxima in Enhanced Difference Map (CutOff level = 0.50 eA-3)

x y z (e/A^3) Shortest Contacts within 3.2 Ang. (Excl. H)

1 0.838 0.642 0.813 2.53 C12 2.43; 2 0.856 0.737 0.673 2.25 C11 2.35; C12 2.50; C10 2.90; O2 3.01; 3 0.424 0.060 0.033 2.00 void O5 2.90; O10 3.07; 4 0.951 0.793 0.655 1.92 void C11 2.70; 5 0.739 0.534 0.781 1.39 C12 1.96; 6 0.567 0.446 0.421 0.89 C9 1.59; C10 2.33; C8 2.45; C11 2.66; 7 0.671 0.538 0.406 0.78 C11 2.10; C9 2.56; C10 2.71; C8 2.98; 8 0.595 0.349 0.416 0.78 C9 2.37; C10 2.52; C11 3.09;

```
9 0.720 0.439 0.613 0.65 C10 1.49; C12 1.53; C11 2.64; C9 2.66;
10 0.012 0.854 0.707 0.60 void C47 2.89;
11 0.066 0.934 0.686 0.54 void C70 3.09; C40 3.13; O8 3.15;
12 0.434 0.935 0.532 0.52 void C31 2.66; C30 3.05; C5 3.14;
```

Unique Density Minima in Enhanced Difference Map (CutOff level = -0.50 eA-3)

 $\# x y z (e/A^3)$ Shortest Contacts within 3.2 Ang. (Excl. H)

1 0.738 0.516 0.566 -0.54 C10 0.60; C11 1.24; C12 1.61; C9 2.05;

2 0.656 0.515 0.559 -0.51 C10 0.44; C9 1.11; C12 1.57; C11 1.67;

Void X(av) Y(av) Z(av) Volume Ang^3 El-Count (e-) Vol/Electron Vol/Atom

1 0.053 0.831 0.679	68	8	8.0	64
2 0.427 0.057 1.011	23	2	13.0	104
3 0.450 0.882 0.506	8	1	7.6	61
4 0.576 0.940 0.595	10	1	7.8	62
5 0.628 0.098 0.940	8	0	27.5	220
6 0.798 0.550 0.836	30	4	7.8	63

Total (Positive) Electron Count in Voids/Cell = 17

Total (Fo-Fc)map Electron Count in Unit Cell = 17

VOID-Fo-Fc-Map: Rho(min) = -0.24, Rho(max) = 2.53, RhoCutOff = 0.00PeaksCloseToAtoms: Rho(min) = -0.54, Rho(max) = 1.39, RhoCutOff = 0.50

:: Fo-scale =0.633349E+00 - SinT/L-Min = 0.20 for Fo/Fc-Scaling

:: Cycle = 4, R(F) = 0.09, Nref(Hemi) = 11555, R(F > 4SIGF) = 0.05 Nref = 6124

Unique Density Maxima in Enhanced Difference Map (CutOff level = 0.50 eA-3)

 $\# x y z (e/A^3)$ Shortest Contacts within 3.2 Ang. (Excl. H)

1 0.838 0.642 0.813 2.53 C12 2.44; 2 0.856 0.737 0.673 2.26 C11 2.35; C12 2.50; C10 2.90; O2 3.01; 3 0.424 0.060 0.033 2.02 void O5 2.90; O10 3.07; 4 0.951 0.793 0.655 1.94 void C11 2.70; 5 0.739 0.534 0.781 1.38 C12 1.96; 6 0.567 0.446 0.421 0.89 C9 1.59; C10 2.33; C8 2.45; C11 2.66; 7 0.671 0.538 0.406 0.78 C11 2.10; C9 2.56; C10 2.71; C8 2.98; 8 0.594 0.349 0.416 0.78 C9 2.36; C10 2.52; C11 3.09; 9 0.720 0.439 0.613 0.65 C10 1.49; C12 1.53; C11 2.64; C9 2.66; 10 0.011 0.854 0.707 0.59 void C47 2.89; 11 0.066 0.933 0.686 0.54 void C70 3.09; C40 3.13; O8 3.16; 12 0.434 0.935 0.531 0.53 void C31 2.65; C30 3.04; C5 3.15;

Unique Density Minima in Enhanced Difference Map (CutOff level = -0.50 eA-3)

x y z (e/A^3) Shortest Contacts within 3.2 Ang. (Excl. H)

1 0.738 0.516 0.566 -0.54 C10 0.60; C11 1.24; C12 1.61; C9 2.05;

2 0.656 0.515 0.559 -0.51 C10 0.44; C9 1.12; C12 1.57; C11 1.67;

Void X(av) Y(av) Z(av) Volume Ang^3 El-Count (e-) Vol/Electron Vol/Atom

1	0.053 0.831 0.679	68	8	8.1	65
2	0.427 0.057 1.011	23	2	13.1	105
3	0.450 0.882 0.506	8	1	7.6	60
4	0.576 0.940 0.595	10	1	7.7	62
5	0.628 0.098 0.940	8	0	27.5	220
6	0.798 0.550 0.836	30	4	7.9	63

Total (Positive) Electron Count in Voids/Cell = 17

Total (Fo-Fc)map Electron Count in Unit Cell = 17

VOID-Fo-Fc-Map: Rho(min) = -0.25, Rho(max) = 2.53, RhoCutOff = 0.00PeaksCloseToAtoms: Rho(min) = -0.54, Rho(max) = 1.38, RhoCutOff = 0.50

:: Fo-scale =0.633357E+00 - SinT/L-Min = 0.20 for Fo/Fc-Scaling

:: Cycle = 5, R(F) = 0.09, Nref(Hemi) = 11555, R(F > 4SIGF) = 0.05 Nref = 6124

:: TRMX = 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00
:: CELL 12.367 13.818 16.091 105.224 97.197 113.827
:: Reflection Data are READ from File : platon.hkl - (OBS-Data)

Note: SQUEEZE Produces and Analyses a Phase Enhanced

Difference Map. No Model Refinement is done by SQUEEZE.

Note on how to Proceed after running PLATON/SQUEEZE:

- The file .hkp now contains solvent free reflection data.

(Original I(obs), A(solv) and B(solv) are beyond column 80)

- Rename this file from extension .hkp to extension .hkl.
- Use this new .hkl file to continue (SHELXL) refinement with a disordered solvent free .ins.
- After L.S.-convergence, run PLATON again with the new .hkl and .res files with the instruction 'CALC FCF' in order to produce a proper final FoFc-CIF on a file with ext = .hkp.
- Rename this .hkp file to a file with extension .fcf.
- Append the .sqf file produced by PLATON (detailing the SQUEEZE results) to the .cif produced by SHELXL.
- Optionally inspect the improved peak list on file .sqz.

Summary and Remarks : N = NOTE, W = WARNING, E = ERROR

- W: Number of unusual anisotropic displacement parameters 1
- N: Total Potential Solvent Accessible Void Vol 147.5 Ang³
- N: Electron Count / Cell = 17 To be included in D(calc), F000 & Mol.Wght.

Crystal structure analysis of (Ac-Val-dgF-Val-^DPro-Gly-Leu-dgL-Val-Ala-^DPro-Gly-Leu-Val-dgF-Val-NH₂) P2

Crystals of peptide were grown by slow evaporation from a solution of methanol and water. A single crystal (0.20 × 0.16 × 0.14 mm) was mounted in a loop with a small amount of the mother liquor. The X-ray data were collected at 100 K temperature on a Bruker AXS SMART APEX II CCD Duo diffractometer using CuK\a radiation ($\lambda = 1.54178$ Å), ω -scans ($2\theta = 67.679^{\circ}$), for a total number of 16610 independent reflections. Space group P 21, a = 14.1965(4), b = 21.9607(7), c = 16.3804(5)Å, $\alpha = 90$, $\beta = 111.9040(15)$, $\gamma = 90(4)$, V= 4738.2(3)Å³, monoclinic, Z =2 for chemical formula (C86 H132 N16 O16), with one molecule in asymmetric unit; $\rho_{calcd} = 1.154 \text{ g cm}^{-3}$, $\mu = 0.065 \text{ mm}^{-1}$, F(000) = 2090, $R_{int} = 0.0457$. The structure was obtained by direct methods using SHELXS-97.² All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were fixed geometrically in the idealized position and refined in the final cycle of refinement as riding over the atoms to which they are bonded. The final *R* value was 0.0719 (wR2 = 0.1933) for 14462 observed reflections ($F_0 \ge 4\sigma(|F_0|)$) and 1081 variables, S = 0.824.

Variable Temperature ¹H NMR of P1

Figure S9: Plot of amides chemical shifts with increasing temperature. The temperature coefficient values ($d\delta/dt$) are given in the Table S10.

Residue	Chemical Shifts (ppm)								dð/dT
	NH	C ^α H	C ^β H	C ^γ H	С ⁸ Н	C ^ω H	Others	(Hz)	ppb/K
Val1	8.38	4.39	2.03	0.8-0.6	-	-	-	9.15	-4.49
dgL2	8.39	6.61	6.64	4.62	1.36	1.63	0.8-0.6	8.85	-4.83
Val3	8.44	4.74	2.12	0.8-0.6	-	-	-	9.25	-6.48
^D Pro4	-	4.33	2.19-1.96	2.17-2.01	3.78	-	-	-	-
Gly5	8.66	3.79-3.98	-	-	-	-	-	6.1	-7.80
Leu6	8.32	4.6	1.88	1.72	0.8-0.6	-	-	8.55	-4.22
dgV7	8.40	6.62	6.80	4.30	1.72	0.8-0.6		8.9	-5.86
Val8	8.48	4.18	2.08	0.8-0.6	-	-	-	9.15	-6.47
Ala9	8.91	4.92	1.32	-	-	-	-	7.95	-2.91
Pro10	-	4.35	2.24-2.02	2.17-2.01	3.76	-	-	-	-
Gly11	8.55	3.69-4.03	-	-	-	-	-	6.4	-6.85
Leu12	8.17	4.61	1.92	1.71	0.8-0.6	-	-	9.15	-6.92
Val13	8.47	5.02	2.03	0.8-0.6	-	-	-	9.15	-6.40
dgL14	8.77	6.22	6.87	4.75	1.58	1.28	0.8-0.6	8.55	-3.28
Val15	8.13	4.52	2.12	0.8-0.6	-	-	-	8.5	-3.31

Table S10: Chemical Shifts and temperature coefficients of peptide P1

General Experimental Details

All amino acids, DiPEA, TFA, Triphenylphosphine were purchased from Aldrich. THF, DCM, DMF, NaOH were purchased from Merck. Ethyl bromoacetate, HBTU, HOBT, EtOAc, NMP, Pet-ether (60-80 °C) were obtained from spectrochem and used without further purification. THF and DiPEA were dried over sodium and distilled immediately prior to use. Column chromatography was performed on Merck silica gel (120-200 mesh). Final peptides were purified on reverse phase HPLC (Waters 600) (C18 column, MeOH/H₂O 65:35- 95:5 as gradient, 1.25 mL flow per min). The ¹H spectra were recorded on Bruker 500 MHz (or 125 MHz for ¹³C) and Jeol 400 MHz (or 100 MHz for ¹³C) using residual solvents signals as an internal reference (CDCl₃ $\delta_{\rm H}$, 7.26 ppm, $\delta_{\rm c}$ 77.3 ppm and CD₃OH $\delta_{\rm H}$ 3.31 ppm, $\delta_{\rm c}$ 49.0 ppm). The chemical shifts (δ) are reported in *ppm* and coupling constants (*J*) in Hz. Mass was recorded on MALDI TOF/TOF (Applied Biosciences) and CD was recorded on JASCO(*J*-815). X-Ray data was collected on Bruker APEX DUO. Self aggregation of peptides were measured using DLS (Malvern: Zetasizer Nano-ZS90). AFM data were colollected on JPK: NanoWizeredII AFM system.

NMR spectroscopy: All NMR studies were carried out by using a Bruker AVANCE^{III}-500 MHz spectrometer at a probe temperature of 300 K. Resonance assignments were obtained by TOCSY and ROESY analysis. All two-dimensional data were collected in phase-sensitive mode, by using the time-proportional phase incrementation (TPPI) method. Sets of 1024 and 512 data points were used in the t_2 and t_1 dimensions, respectively. For TOCSY and ROESY analysis, 32 and 72 transients were collected, respectively. A spectral width of 6007 Hz was used in both dimensions. A spin-lock time of 256 ms was used to obtain ROESY spectra. Zero-filling was carried out to finally yield a data set of 2 K ×1 K. A shifted square-sine-bell window was used before processing.

General procedure for the synthesis of ethyl ester of Boc-Protected α , β -unsaturated γ -amino acids.

Boc-amino aldehyde (10 mmol) was dissolved in 30 mL of dry THF. The ylide (15 mmol, 5.22g) was added at RT. Reaction mixture was stirred for about 5hrs at RT. Completion of reaction was monitored by TLC. After completion, reaction mixture was quenched with 50 mL of 2*N* ammonium chloride solution. The product was extracted with EtOAc (3×80 mL). Combined organic layer was washed with brine (60 mL) and dried over anhydrous Na₂SO₄. Organic layer was concentrated under reduced pressure to give crude product, which was further purified on silica gel column chromatography using EtOAc/Pet-ether (60-80 °C) to get pure ethyl ester of Boc-protected α , β -unsaturated γ -amino acid.

Scheme 1: Synthesis of ethyl ester of Boc-Protected α , β -unsaturated γ - amino acids

General procedure for the synthesis of Fmoc- α , β -unsaturated γ - amino acids.

Boc- α , β **-unsaturated** γ **-amino acid**: Ethyl ester of Boc- α , β -unsaturated γ - amino acid (2 mmol) was dissolved in 5 mL of ethanol. Then 5 mL of 1*N* NaOH was added slowly to the reaction mixture. After completion of the reaction (~30 min), ethanol was evaporated from the reaction mixture and residue was acidified using 10 mL of 5% HCl (5% volume in water) at cold conditions. The product was extracted with ethyl acetate (3× 40 mL). Combined organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄. The solvent was concentrated under reduced pressure to give Boc- α , β -unsaturated γ -amino acid as gummy product in a quantitative yield.

The Boc- α , β -unsaturated gamma amino acid (1 mmol) was dissolved in 5 mL of DCM and cooled to 0 °C in ice bath followed by 5 mL of neat TFA was added to the reaction mixture. After 30 min, TFA was removed from reaction mixture under *vacuum*. Residue was dissolved in 15 mL of water (15 mL) and the pH was adjusted to ~10 by the slow addition of solid Na₂CO₃. The solution of Fmoc-OSu (1 mmol) in 10 mL of THF was added slowly to the reaction mixture. Reaction mixture was stirred overnight at RT. After completion of the reaction, the reaction mixture was acidified with 20 mL of 20% HCl (20% volume in water) in cold condition. Product was extracted with ethyl acetate (3× 50 mL). Combined organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄. The solvent was concentrated under reduced pressure to give gummy product, which was recrystallized using EtOAc/Pet-ether. The pure white solid of

Fmoc- α , β -unsaturated γ -amino acid was subjected for SPPS. The schematic representation of the synthesis is shown below.

 $R = -^{i}Pr$, $-^{i}Bu$

Scheme 2: Synthesis of Fmoc-Protected α , β -unsaturated γ - amino acids

(*S*, *E*)-ethyl 4-(tert-butoxycarbonylamino)-5-methylhex-2-enoate (Boc-dgV-OEt) Colorless crystalline (2.30g, 85%).

¹**H** NMR (500 MHz, CDCl₃) δ 6.88-6.84 (dd, J = 15.5, J = 4.5, 1H, CH=CHCO₂Et), 5.93-5.90 (d, J = 15.5, 1H, CH=CHCO₂Et), 4.57-4.56 (d, J = 8.5, 1H, NH), 4.21-4.17 (m, 3H, -OCH₂, CH-CH=CH), 1.89-1.85 (m, 1H, CH-(CH₃)₂), 1.45 (s, 9H, -(CH₃)₃ Boc), 1.30-1.28 (t, J = 7, 3H, -OCH₂CH₃), 0.95-0.90 (dd, J = 15.5, J = 7, 6H, CH-(CH₃)₂);

¹³**C NMR** (100MHz, CDCl₃) δ 166.24, 155.31, 147.34, 121.40, 79.61, 60.38, 56.61, 32.18, 28.29, 18.81, 17.94, 14.18;

MALDI TOF/TOF mass calcd. for $C_{14}H_{25}NO_4 [M+Na]^+$ 294.1681, observed, 294.1606.

(S, E)-ethyl 4-(tert-butoxycarbonylamino)-6-methylhept-2-enoate (Boc-dgL-OEt)

Colorless crystalline (2.47g, 87%); ¹H NMR (500 MHz, CDCl₃) δ 6.85-6.80 (dd, J = 16, J = 5.5, 1H, CH=CHCO₂Et), 5.93-5.89 (d, J=16, 1H, CH=CHCO₂Et), 4.49 (b, 1H, NH), 4.37-4.32 (m, 1H, CH-CH=CH), 4.21-4.16 (q, J = 7, 2H, -OCH₂), 1.72-1.67 (m, 1H, CH-(CH₃)₂), 1.44 (s, 9H, -(CH₃)₃ Boc), 1.40-1.37 (t, J = 7, 2H, CH₂CH-(CH₃)₂), 1.30-1.27 (t, J = 7, 3H, -OCH₂CH₃),

0.94-0.93 (d, $J = 6.5, 6H, CH-(CH_3)_2$); ¹³C NMR (100MHz, CDCl₃) δ 166.41, 155.05, 148.89, 120.35, 79.65, 60.40, 49.75, 43.78, 28.31, 24.67, 22.68, 22.14, 14.20; MALDI TOF/TOF mass calcd. for C₁₅H₂₇NO₄ [M+Na]⁺ 308.1838, observed, 308.1857.

Boc-(S, E)-dgL-OEt

(S, E)-ethyl 4-(tert-butoxycarbonylamino)-5-phenylpent-2-enoate (Boc-dgF-OEt)

White powder (2.67 g, 84%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.30-7.14 (m, 5H, -Ph), 6.91-6.86 (dd, J = 5.04, J = 11, 1H, CH=CHCO₂Et), 5.85-5.81 (d, J = 17.4, 1H, CH=CHCO₂Et), 4.59 (b, 1H, NH), 4.52 (b, 1H, CH=CH), 4.18-4.13 (q, J = 6.88, 2H, -OCH₂), 2.92-2.85 (m, 2H, CH₂-Ph), 1.37 (s, 9H, -(CH₃)₃ Boc), 1.27-1.23 (t, J = 7.3, 3H, -OCH₂CH₃);

¹³**C** NMR (100MHz, CDCl₃) δ 166.14, 154.91, 147.56, 136.33, 129.36, 128.54, 126.83, 121.04, 79.83, 60.44, 52.16, 40.82, 28.26, 14.18; MALDI TOF/TOF m/z Calcd. For C₁₈H₂₅NO₄ [M+Na]⁺ 342.1681, observed 342.1657.

Boc-(S, E)-dgF-OEt

(*S*, *E*)-4-(((9H-fluoren-9-yl)methoxy)carbonylamino)-5-methylhex-2-enoic acid: White powder (0.590g, 90%); ¹H NMR (400 MHz, CDCl₃) δ 7.7814-7.3095(m, 8H, -Fmoc aromatic) 6.9853-6.9349(dd, *J*=9.6, *J*=5.34, 1H, CH=CHCO₂Et), 5.9154-5.8730 (d, *J*=16, 1H, CH=CHCO₂Et), 4.8123-4.7871 (d, *J*=9.1,1H, NH), 4.4881-4.4732 (d, *J*=6.1, 2H, -OCH₂-Fmoc), 4.3174-4.2086 (m, 2H, CH-CH=CH,-CH(of Fmoc)), 1.9360-1.8524(m, 1H, CH-(CH₃)₂), 0.9543-0.9096 (m, 6H, CH-(CH₃)₂); ¹³C NMR (100MHz, CDCl₃) δ 170.6868, 155.8987, 149.3389, 143.7707, 141.3298, 127.7430, 127.0661, 124.9017, 121.0402, 119.9819, 66.6454, 57.2825, 47.2902, 32.1112, 18.8772, 18.0191; MALDI TOF/TOF Mass calcd. for C₂₂H₂₃NO₄ [M+Na⁺] 388.1525, observed, 388.1581

(*S*,*E*)-4-(((9H-fluoren-9-yl)methoxy)carbonylamino)-6-methylhept-2-enoic acid: White powder (0.60 g, 89%); ¹H NMR (400 MHz, CDCl₃) δ 7.7754-7.3033(m, 8H, -Fmoc aromatic) 6.9482-6.8955(dd, *J*=10.5, *J*=5.4, 1H, CH=CHCO₂Et), 5.9069-5.8680 (d, *J*=15.5, 1H, CH=CHCO₂Et), 4.6859-4.6652 (d, *J*=8.2,1H, NH), 4.4842-4.4686 (d, *J*=6.2, 2H, -OCH₂-Fmoc)), 4.4281-4.3926 (t, *J*=4.7, 1H, CH-CH=CH), 4.2277-4.1967(t, *J*=4.1, 1H,-CH(of Fmoc), 1.6824-1.6033(m, 2H, CH₂-CH-(CH₃)₂), 1.4281-1.3926 (t, *J*=4.7, 3H, CH-(CH₃)₂) 0.9372-0.9218 (d, *J* = 6.1, 6H, CH-(CH₃)₂); ¹³C NMR (100MHz, CDCl₃) δ 170.7535, 155.6031, 150.8358, 143.7325, 141.3298, 127.7335, 127.0661, 124.9017, 119.9724, 66.5501, 50.3032, 47.29.02, 43.4669, 24.6742, 22.7196, 22.0331; MALDI TOF/TOF Mass calcd. for C₂₃H₂₅NO₄ [M+Na⁺] 402.1681, observed, 402.1662.

Fmoc-(*S*, *E*)-dgL-OH (**S**,**E**)-4-((((**9H-fluoren-9**-

yl)methoxy)carbonyl)amino)-5-phenylpent-2-enoic acid⁽¹**H** NMR; 400 MHz (DMSO D₆, 25°C,): δ = 2.72-2.80 (m, 1H), 2.87-2.92 (m, 1H), 4.14-4.27 (m,3H), 4.40-4.44 (m, 1H), 5.77-5.81 (d, J=8Hz,1H), 6.80-6.85 (dd, J=4Hz,4Hz, 1H), 7.19-7.34 (m, 8H), 7.39-7.42 (m, 2H), 7.61-7.68 (m, 3H), 7.87-7.89 (m, 2H), 12.32(bs, 1H)ppm ; ¹³C NMR 100 MHz (DMSO, 25°C,): δ = 47.1, 53.7, 65.9, 120.6, 121.5, 125.6, 126.7, 127.4, 128.0, 128.6, 129.6, 128.6, 129.6, 138.5, 141.1, 144.1, 144.3, 148.5, 155.9, 167.4ppm; MALDI.TOF/ m/z Calculated value for C₂₆H₂₃NO₄ [M+Na]⁺ 413.16 and Observed 436.13.

SPPS peptide synthesis of P1 and P2

Peptides **P5** and **P6** were synthesized at 0.2 mmol scale on Rink Amide resin using standard Fmoc-chemistry. HBTU/HOBT were used as coupling agents for alpha amino acids and only HBTU was used as coupling agent for *E*-vinylogous γ -amino acids. Fmoc deprotections were performed using 20% piperidine in DMF. The coupling reactions were monitored by Kaiser Test. N-terminal of the final peptides was capped with acetyl group using acetic anhydride and pyridine. After completion of the synthesis, peptide was cleaved from the resin using 15 mL of TFA/thioanisole/H₂O (98:1.5:0.5) cocktail mixture. The cleavage mixture was evaporated under reduced pressure to give gummy product. Peptides were precipitated using EtOAc/hexane and purified on reverse phase HPLC, with C₁₈ column using MeOH/H₂O (system MeOH/H₂O 65:35-95:5 as gradient, 1.25 mL flow per min) gradient system. Homogeneity of the peptides was further confirmed using analytical C₁₈ column in same MeOH/H₂O (system MeOH/H₂O 70:30-95:5 as gradient, 3 mL flow per min) gradient system.

NMR and Mass Spectral Data

Spectrum Report

¹H NMR spectrum of P1

Figure S10: ¹H NMR spectrum of P1 in MeOH.

¹H NMR spectrum of **P2**

Figure S11: ¹H NMR spectrum of P2 in MeOH.

Figure S12: MALDI-TOF/TOF mass spectrum of P1

Final - Shots 1000 - IISER-4; Run #232; Label D20

Figure S13: MALDI-TOF/TOF mass spectrum of P2

Figure S14: Reverse Phase HPLC profile of 3-stranded β -sheet (P1). Methanol/ H₂O were used as a solvent system at a flow rate of 1.25 mL /min.

Figure S15:Reverse Phase HPLC profile of 3-stranded β -sheet (**P2**). Methanol/ H₂O were used as a solvent system at a flow rate of 3 mL /min.

Reference

1 References:

1. SAINT Plus (Version 7.03); Bruker AXS Inc.: Madison, WI, 2004.

2. (a) G. M. Sheldrick, SHELXTL Reference Manual, version 5.1; Bruker AXS: Madison, WI, 1997. (b) G. M. Sheldrick, *Acta Crystallogr.*, Sect. A: Found. Crystallogr. 2008, 112–122.

3. L. J. Farrugia, WINGX version 1.80.05; University of Glasgow: Glasgow, 2009.

4. A. L. Spek, PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2005

5. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.