Supporting Information for the Paper

Synthesis of BN-Embedded Tetraphenes and Their Photophysical Properties

Huanan Huang, Zexiong Pan, Chunming Cui*

State Key Laboratory of Elemento-Organic Chemistry; Cooperative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China

Corresponding author: Chunming Cui

<u>cmcui@nankai.edu.cn</u>

Contents

1	General Information	S2
2	Synthesis of BN Naphthalenes 2a-2i	S2
3	Typical Procedures for the Synthesis of Compound 3-15	.S2
4	Procedure for the Bromination of 3	.S3
5	Reaction of 16 with Phenylacetylene (Sonogashira Reaction)	S 3
6	Characterization Data for the New Compounds	S4
7	Reaction Condition Optimization	.S15
8	X-ray Crystallographic Studies of Compound 3 and 17	S15
9	UV-Vis and FL Studies of Compound 3 -15	S17
1(0 CV experiments and DFT Calculations	S21
11	l Reference	.827
12	2 Scanned NMR Spectra for the New Compounds	S28
13	3. HMQC, HMBC and COSY Spectra for 3	S47

General Information. All operations involving air- and moisture-sensitive compounds were carried out under an atmosphere of dry argon by using a modified Schlenk line and glovebox techniques. All solvents were freshly distilled from Na or P_2O_5 . The ¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded on a 400 MHz NMR spectrometer. Chemical shifts are referenced against external BF₃· Et₂O (¹¹B), and CFCl₃ (¹⁹F). High-resolution mass spectra (HRMS) were obtained on a Varian 7.0T FTMS spectrometer. The UV-vis spectra were recorded on a Shimadzu UV-2450 spectrometer. Fluorescence spectra were obtained with a VARIAN CARY Eclipse spectrometer. Cyclic voltammetry (CV) experiments were performed with a LK98B II Microcomputer-based Electrochemical Analyzer in dichloromethane solutions. All measurements were carried out at room temperature with a conventional three-electrode (SCE), and a Pt wire as the counter electrode). Ferrocene/ferrocenium redox couple (Fc/Fc⁺) was used as an internal reference for all measurements. The commercially available catalysts and reagents were purchased from J&K Scientific.

Synthesis of BN Naphthalenes 2a-2i

These BN-naphthalene derivatives are new compounds and have been prepared by a modified procedure^{S1}. To an oven-dried Schlenk flask with a stir bar was added a potassium organotrifluoroborate. After the flask was evacuated under vacuum and purged with argon, cyclopentyl methyl ether (CPME) in toluene were added (0.5 M, CPME/toluene = 1:1) followed by the addition of 2-vinylaniline derivatives (1.2 or 1.5 equivalents), SiCl₄ (1 equivalent), and NEt₃ (1.5 equivalents if required). The mixture was stirred at 80 °C for 18 h. It was filtered and the remaining residues were washed with *n*-hexane. The combined solution was evaporated to dryness under vacuum to give the crude product, which was purified by flash column chromatography.

Typical Procedures for the Synthesis of Compound 3-15.

To a sealed tube was added an alkyne (0.5 mmol for compounds 3-6 and 8-15, 1.0 mmol for 7),

Pd(OAc)₂ (10 mol%), PPh₃ (20 mol%), Na₂CO₃ (2 equiv), LiCl (1 equiv) and acetonitrile (2 mL) under argon followed by the addition of a borazaronaphthalene **2** (0.75 mmol for compounds **3-6** and **8-15**, 0.5 mmol for **7**). After the mixture was stirred at 120 °C for 8-24 h, it was cooled down to room temperature. It was filtered and washed with CH_2Cl_2 . The combined filtrate was evaporated to dryness to give a crude product, which was purified by silica gel chromatography. The yields for compounds **3-6** and **8-15** were obtained based on the alkynes, whereas the yield for **7** was obtained based on the BNnaphthalene.

Procedure for the Bromination of 3

To a cooled solution (0 °C) of **3** (190 mg, 0.50 mmol) in CH_2Cl_2 (5 mL) was slowly added a solution of bromine (1M in CH_2Cl_2 , 0.65 mL, 1.0-1.3 equivalents) diluted with CH_2Cl_2 (5 mL). After the addition, the mixture was stirred at 0 °C for 45 min, and then at room temperature for 2 h. The resulting mixture was evaporated to dryness to give the crude product, which was purified by flash column chromatography to give **16** as yellow solid (60%).

Sonogashira-Coupling of 16 with Phenylacetylene

To a dried Schlenk flask charged with **16** (230 mg, 0.5 mmol), phenylacetylene (153 mg, 1.5 mmol), $Pd(PPh_3)_2Cl_2$ (18 mg, 5 mol %), and CuI (5.0 mg, 5 mol %) was added triethylamine (153 mg, 1.5 mmol) and DMF (5 mL). The mixture was heated and stirred at 80°C for 17 h. The resulting mixture was successively washed with water (50 mL) and extracted twice with EtOAc (30 mL). The combined organic layers were dried over Na_2SO_4 . Analytically pure **17** was obtained as yellow powder (82%) by silica gel chromatography.

Characterization Data for the New Compounds Reported in the Paper

2-(2-bromophenyl)-1, 2-dihydrobenzo[e][1, 2] azaborinine (2a). 2a was obtained as white solid (75%). ¹H NMR (400 MHz, CDCl₃): δ 8.37 (1H, br s, N*H*), 8.12 (1H, d, *J* = 12.0 Hz, 2-C*H*), 7.65 (1H, d, *J* = 8.0 Hz, Ar-H), 7.59 (2H, d, *J* = 8.0 Hz, Ar-H), 7.41 (1H, t, *J* = 6.0 Hz, Ar-H), 7.33 (1H, t, *J* = 6.0 Hz, Ar-H), 7.27 (1H, d, *J* = 8.0 Hz, Ar-H), 7.14-7.23 (3H, m, Ar-H). ¹¹B NMR (128 MHz, CDCl₃): δ 34.1 (br, s). ¹³C NMR (101MHz, CDCl₃): δ 145.3 (s, CH, C-3), 139.6 (s, quaternary-C, C-9), 135.8 (s, Ar-C), 132.7 (s, Ar-C), 130.4 (s, CH), 129.6 (s, CH, C-13), 128.5 (s, Ar-C), 127.5 (s, quaternary-C, C-4), 126.9 (s, Ar-C), 125.5 (s, quaternary-C, C-11), 121.5 (s, Ar-C), 118.6 (s, Ar-C), C-2, C-10 were not observed. EI-MS (*m/z*): calcd for [M]⁺ C₁₄H₁₁BBrN: 283.01; Found: 283.07.

2-(2-bromo-4-methylphenyl)-1, 2-dihydrobenzo[e][1, 2] azaborinine (2b). **2b** was obtained as white solid (72%). ¹H NMR (400 MHz,CDCl₃): δ 8.41 (1H, br s, N*H*), 8.12 (1H, d, *J* = 12.0 Hz, 2-C*H*), 7.66 (1H, d, *J* = 8.0 Hz, Ar-H), 7.54 (1H, d, *J* = 8.0 Hz, Ar-H), 7.45 (1H, s, 12-C*H*), 7.42 (1H, d, *J* = 8.0 Hz, Ar-H), 7.30 (1H, d, *J* = 8.0 Hz, Ar-H), 7.15-7.22 (3H, m, Ar-H), 2.36 (3H, s, C*H*₃). ¹¹B NMR (128 MHz, CDCl₃): δ 34.2 (br, s). ¹³C NMR (101 MHz, CDCl₃): δ 145.1 (s, C-7), 140.7 (s, quaternary-C, C-13), 139.7 (s, quaternary-C, C-9), 135.8 (s, Ar-C), 133.3 (s, Ar-C), 129.5 (s, Ar-C), 128.4 (s, Ar-C), 127.8 (s, Ar-C), 127.5 (s, quaternary-C, C-4), 125.4 (s, quaternary-C, C-11), 121.4 (s, Ar-C), 118.5 (s, Ar-C), 21.0 (s, CH₃), C-2 and C-10 could not be not observed. EI-MS (*m/z*): calcd for [M]⁺ C₁₄H₁₁BBrN: 297.03; Found: 297.07.

2-(2-bromo-4-fluorophenyl)-1, 2-dihydrobenzo[e][1, 2] azaborinine (2c). 2c was obtained as whit e solid (63%). ¹H NMR (400 MHz, CDCl₃): δ 8.37 (1H, br s, N*H*), 8.13 (1H, d, *J* = 12 Hz, 2-C*H*), 7.66 (1H, d, *J* = 8.0 Hz, Ar-H), 7.58 (1H, t, *J* = 8.0 Hz, Ar-H), 7.44 (1H, t, *J* = 8.0 Hz, Ar-H), 7.36 (1H, d, *J* = 8.0 Hz, Ar-H), 7.21 (1H, t, *J* = 8.0 Hz, Ar-H), 7.06-7.13 (2H, m, Ar-H). ¹¹B NMR (128 MHz, CDCl

₃): δ 34.2 (s, br). ¹⁹F NMR (376 MHz, CHCl₃): δ -110.8 . ¹³C NMR (101 MHz, CDCl₃): δ 161.8 (d, J_{C-F} = 253.5 Hz, quaternary-C, C-13), 144.3 (s, CH, C-3), 138.4 (s, quaternary-C, C-9), 135.7 (d, J_{C-F} = 8.1 Hz, C-15), 128.4 (s, Ar-C), 127.5 (s, Ar-C), 126.2 (d, J_{C-F} = 10.1 Hz, quaternary-C, C-11), 124.3 (s, qu aternary-C, C-4) 120.5 (s, Ar-C), 119.0 (d, J_{C-F} = 23.2 Hz, Ar-C), 117.4 (s, Ar-C), 113.2 (d, J_{C-F} = 19.2 Hz, Ar-C), C-2, C-10 were not observed. EI-MS (*m/z*): calcd for [M]⁺ C₁₄H₁₀BBrFN: 301.01; Found: 3 01.02.

1-benzyl-2-(2-bromophenyl)-1, 2-dihydrobenzo[e][1, 2] azaborinine (2d). 2d was obtained as whi -te solid (53%). ¹H NMR (400 MHz,CDCl₃): δ 8.12 (1H, d, *J* = 12 Hz, 2-C*H*), 7.71 (1H, d, *J* = 8.0 Hz, Ar-H), 7.55 (1H, d, *J* = 8.0 Hz, Ar-H), 7.06-7.35 (11H, m, Ar-H), 6.96 (1H, d, *J* = 12 Hz, Ar-H), 5.29 (2 H, q, *J* = 18.67 Hz, 16-C*H*₂). ¹¹B NMR (128 MHz, CDCl₃): δ 36.7 (s, br). ¹³C NMR(101 MHz, CDCl₃): δ 145.4 (s, CH, C-3), 140.8 (s, quaternary-C, C-17), 138.6 (s, quaternary-C, C-9), 132.9 (s, Ar-C), 13 1.8 (s, Ar-C), 130.4 (s, Ar-C), 129.4 (s, Ar-C), 128.7 (s, 2*Ar-C, overlap), 128.6 (s, Ar-C), 127.5 (s, qua ternary-C, C-4), 126.9 (s, Ar-C), 126.5 (s, Ar-C), 126.4 (s, quaternary-C, C-11), 125.9 (s, 2* Ar-C, over lap), 121.3 (s, Ar-C), 117.2 (s, Ar-C), 52.6 (s, C-16), C-2, C-10 were not observed. EI-MS (*m/z*): calcd for [M]⁺ C₂₁H₁₇BBrN: 373.06; Found: 373.08.

2-(2-bromophenyl)-1-butyl-1, 2-dihydrobenzo[e][1, 2] azaborinine (2e). 2e was obtained as white solid (53%). ¹H NMR (400 MHz,CDCl₃): δ 8.04 (1H, d, *J*=12 Hz, 2-*CH*), 7.71 (1H, d, *J*= 4.0 Hz, Ar-H), 7.51-7.59 (3H, m, Ar-H), 7.19-7.33 (4H, m, Ar-H), 6.83-6.85 (1H, m, Ar-H), 3.88-4.09 (2H, m, 16-*CH*₂), 1.81-1.86 (2H, m, 17-*CH*₂), 1.20-1.26 (2H, m, 18-*CH*₂), 0.75-0.79 (3H, m, 19-*CH*₃). ¹¹B NMR (1 28 MHz, CDCl₃): δ 36.2 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 144.9 (s, CH, C-3), 140.9 (s, quaternar y-C-9), 133.1 (s, Ar-C), 131.8 (s, Ar-C), 130.7 (s, Ar-C), 129.1 (s, Ar-C), 128.6 (s, Ar-C), 127.4 (s, quat ernary-C, C-4), 126.4 (s, Ar-C), 126.2 (s, quaternary-C-11), 120.9 (s, Ar-C), 115.6 (s, Ar-C), 48.2 (s, C-16), 31.9 (s, C-17), 20.3 (s, C-18), 13.7 (s, C-19), C-2, C-10 were not observed. EI-MS (*m/z*): calcd for [M]⁺ C₁₈H₁₉BBrN: 339.08; Found: 339.08.

1-benzyl-2-(2-bromophenyl)-7-methyl-1, 2-dihydrobenzo[e][1, 2] azaborinine (2f). 2f was obtain -ed as white solid (53%). ¹H NMR (400 MHz, CDCl₃): δ 8.10 (1H, d, *J* = 8 Hz, Ar-H), 7.61 (1H, d, *J* = 8 Hz, Ar-H), 7.6056 (1H, d, *J* = 8 Hz, Ar-H), 7.13-7.24 (7H, m, Ar-H), 7.03-7.09 (2H, m, Ar-H), 6.90 (1H, d, *J* = 12 Hz, Ar-H), 5.29 (2H, q, *J* = 20 Hz, 16-CH₂), 2.34 (3H, s, CH₃). ¹¹B NMR (128 MHz, CD Cl₃): δ 36.7 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 145.2 (s, CH, C-3), 141.0 (s, quaternary-C-17), 13 8.8 (s, quaternary- C-7 + C-9, overlap), 132.9 (s, Ar-C), 131.8 (s, Ar-C), 130.2 (s, Ar-C), 129.3 (s, Ar-C), 128.6 (s, 2*Ar-C, overlap), 126.8 (s, Ar-C), 126.5 (s, Ar-C), 126.4 (s, quaternary-C-4), 126.0 (s, 2* Ar-C, overlap), 125.3 (s, quaternary-C-11), 122.7 (s, Ar-C), 117.2 (s, Ar-C), 52.4 (s, C-16), 22.2 (s, CH 3), C-2, C-10 were not observed. EI-MS (*m/z*): calcd for [M]⁺ C₂₂H₁₉BBrN: 387.08; Found: 387.06.

1-benzyl-2-(2-bromophenyl)-5-fluoro-1, 2-dihydrobenzo[e][1, 2] azaborinine (2g). 2g was obtain ed as white solid (47%).¹H NMR (400 MHz, CDCl₃): δ 8.45 (1H, d, *J* = 12 Hz, 2-C*H*), 7.55 (1H, d, *J* = 8 Hz, Ar-H), 7.13-7.24 (8H, m, Ar-H), 7.01-7.06 (3H, m, Ar-H), 6.89 (1H, t, *J* = 8 Hz, Ar-H), 5.28 (2 H, q, *J* = 16 Hz,16-C*H*₂).¹¹B NMR (128 MHz, CDCl₃): δ 36.8 (s, br).¹⁹F NMR (376 MHz, CHCl₃): δ -120.2.¹³C NMR (101 MHz, CDCl₃): δ 160.1 (d, quaternary-C-5, *J*_{C-F} = 250.48 Hz), 142.1 (d, quaternar y-C-9, *J*_{C-F} = 6.1 Hz), 138.3 (s, quaternary-C-17), 136.7 (d, *J*_{C-F} = 7.1 Hz, C-3), 132.8 (s, Ar-C), 131.9 (s, Ar-C), 129.5 (s, Ar-C), 128.7 (s, 2*Ar-C, overlap), 128.4 (d, *J*_{C-F} = 10.1 Hz, Ar-C), 127.0 (s, Ar-C), 126.6 (s, Ar-C), 126.3 (s, quaternary-C-11), 125.9 (s, 2*Ar-C, overlap), 117.0 (d, quaternary-C-4, *J*_{C-F} =16.2), 113.1 (d, *J*_{C-F} = 3.0 Hz, C-8), 106.8 (d, *J*_{C-F} = 21.2 Hz, C-6), 53.0 (s, C-16), C-2, C-10 were not observed. EI-MS (*m*/*z*): calcd for [M]⁺ C₂₂H₁₉BBrN: 391.05; Found: 391.06.

2-(3-bromothiophen-2-yl)-1, 2-dihydrobenzo[e][1, 2] azaborinine (2h). **2h** was obtained as white solid (45%).¹H NMR (400 MHz,CDCl₃): δ 9.01 (1H, br s, N*H*), 8.09 (1H, d, *J* = 12.0 Hz, 2-C*H*), 7.63 (1H, d, *J* = 4.0 Hz, Ar-H), 7.54 (1H, d, *J* = 4.0 Hz, Ar-H), 7.42-7.46 (1H, m, Ar-H), 7.33-7.35 (1H, m, v), 7.16-7.23 (3H, m, Ar-H). ¹¹B NMR (128 MHz, CDCl₃): δ 36.68 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 145.8 (s, CH, C-3), 140.5 (s, quaternary-C-9), 132.9 (s, Ar-C), 131.2 (s, Ar-C), 129.5 (s, Ar-C), 128.7 (s, Ar-C), 125.5 (s, quaternary-C-4), 121.4 (s, Ar-C), 118.7 (s, Ar-C), 115.3 (s, quaternary-C-11), C-2, C-10 were not observed. EI-MS (*m/z*): calcd for [M]⁺ 288.97; Found: 289.05.

5, **6**-diphenyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (3). 3 was obtained as y -ellow-green solid (73%). ¹H NMR (400 MHz, CDCl₃): δ 8.90 (1H, br s, N*H*), 8.42 (1H, q, *J* = 2.7 Hz, 5-*CH*), 8.00 (1H, s, 2-*CH*), 7.69 (1H, d, *J* = 8 Hz, 3-*CH*), 7.49-7.57 (4H, m), 7.33-7.36 (1H, m, 4-*CH*), 7.12-7.22 (11H, m, Ar-H). ¹¹B NMR (128 MHz, CDCl₃): δ 29.13. ¹³C NMR (101 MHz, CDCl₃): δ 143. 1 (s, quaternary-C), 142.4 (s, C-2), 141.3 (s, quaternary-C), 140.3 (s, quaternary-C), 140.2 (s, quaternary-C), 139.2 (s, quaternary-C), 138.5 (s, quaternary-C), 131.2 (s, 2*Ar-C, overlap), 131.0 (s, 2*Ar-C, overlap), 130.6 (s, C-3), 130.1 (s, Ar-C), 129.5 (s, C-5), 129.0 (s, C-4), 128.9 (s, Ar-C), 127.6 (s, 2*Ar-C, overlap), 127.4 (s, 2*Ar-C, overlap), 126.1 (s, Ar-C), 126.0 (s, Ar-C), 125.5 (s, quaternary-C), 125. 2 (s, Ar-C), 121.1 (s, Ar-C), 118.5 (s, C-6), C-1, C-14 were not observed. HR-MS (*m*/*z*) calcd for [M]⁺ C₂₈H₂₀BN: 381.1689; Found: 381.1688.

5, **6**-**di**-**p**-**tolyl-12 H**-**benzo[e]benzo[5**, **6**]**borinino[1**, **2**-**b**]**[1**, **2**] **azaborinine** (**4**). **4** was obtained as yellow-green solid (66%). ¹H NMR (400 MHz, CDCl₃): δ 8.93 (1H, br s, N*H*), 8.38-8.41 (1H, q, *J* = 4 Hz, 5-C*H*), 8.01 (1H, s, 2-C*H*), 7.71 (1H, d, *J* = 8.0 Hz, 3-C*H*), 7.48-7.60 (4H, m, Ar-H), 7.33-7.35 (1 H, m, 4-C*H*), 7.22-7.25 (1H, m, Ar-H), 7.03 (8H, s, 18-C*H* + 19-C*H* + 22-C*H* + 23-C*H*), 2.32-2.30 (6 H, d, 25-C*H*₃ + 26-C*H*₃). ¹¹B NMR (128 MHz, CDCl₃): δ 30.7 (br, s). ¹³C NMR (101 MHz, CDCl₃): δ 1 43.5 (s, quaternary-C), 142.21 (s, C-2), 140.2 (s, quaternary-C), 139.2 (s, quaternary-C), 138.4 (s, quaternary-C), 137.2 (s, quaternary-C), 135.3 (s, quaternary-C), 135.2 (s, quaternary -C), 131.0 (s, 2*Ar-C, overlap), 130.8 (s, 2*Ar-C, overlap), 130.6 (s, C-3), 130.0 (s, C-11), 129.3 (s, C-5), 129.0 (s, C-4), 128.7 (s, Ar-C), 128.3 (s, 2*Ar-C, overlap), 128.1 (s, 2*Ar-C, overlap), 125.6 (s, quaternary-C), 125.0 (s, Ar-C), 121.0 (s, Ar-C), 118.3 (s, C-6), 21.3 (s, CH₃), 21.3 (s, CH₃), C-1, C-14 were not observed. HR-MS (*m*/*z*) calcd for [M]⁺ C₃₀H₂₄BN: 409.2002, Found: 409.2001.

5, **6**-bis(4-fluorophenyl)-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (5). 5 was obtained as yellow-green solid (68%). ¹H NMR (400 MHz, CDCl₃): δ 8.96 (1H, br s, N*H*), 8.41-8.43 (1 H, q, *J* = 2.7 Hz, 5-C*H*), 7.97 (1H, s, 2-C*H*), 7.72 (1H, d, *J* = 8.0 Hz, 3-C*H*), 7.52-7.63 (4H, m, Ar-H), 7.25-7.32 (2H, m, Ar-H), 7.05-7.10 (4H, m, Ar-H), 6.90-6.96 (4H, m, Ar-H). ¹¹B NMR (128 MHz, CD Cl₃): δ 29.6 (br, s). ¹⁹F NMR (376 MHz, CHCl₃): -115.4, -115.3. ¹³C NMR (101 MHz, CDCl₃): δ 162.5 (d, *J*_{C-F} = 245.4 Hz, CF, quaternary-C), 160.1 (d, *J*_{C-F} = 245.4 Hz, CF, quaternary-C), 142.9 (s, quaternary-C), 142.4 (s, C-2), 139.7 (s, quaternary-C), 139.3 (s, quaternary-C), 137.8 (s, quaternary-C), 137.0 (d, *J*_{C-F} = 3.0 Hz, quaternary-C), 136.0 (d, *J*_{C-F} = 4.0 Hz, quaternary-C), 132.5 (d, *J*_{C-F} = 26.3 Hz, 2*Ar-C, overlap), 132.4 (d, *J*_{C-F} = 27.3 Hz, 2*Ar-C, overlap), 130.6 (s, C-3), 130.1 (s, Ar-C), 129.5 (s, C-5), 129.1 (s, C-4), 128.8 (s, Ar-C), 125.43 (s, quaternary-C), 125.41 (s, Ar-C), 121.2 (s, Ar-C), 118.4 (s, C-6), 114.7 (d, *J*_{C-F} = 21.2 Hz, 2*Ar-C, overlap), 114.5 (d, *J*_{C-F} = 20.2 Hz, 2*Ar-C, overlap), C-1, C-14 we

re not observed. HR-MS (m/z) calcd for $[M]^+ C_{28}H_{18}BF_2N$: 417.1500; Found: 417.1501.

5, **6**-bis(4-(trifluoromethyl)phenyl)-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (**6**). **6** was obtained as yellow-green solid (70%). ¹H NMR (400 MHz, CDCl₃): δ 9.02 (1H, br s, N*H*), 8. 46 (1H, d, *J* = 8 Hz, Ar-H), 7.91 (1H, s, 2-C*H*), 7.74 (1H, d, *J* = 8 Hz, 3-C*H*), 7.49-7.66 (8H, m, Ar-H), 7.21-7.31 (6H, m, Ar-H). ¹¹B NMR (128 MHz, CDCl₃): δ 31.0 (br, s). ¹⁹F NMR (376 MHz, CHCl₃): -6 2.4, -62.5. ¹³C NMR (101 MHz, CDCl₃): δ 144.8 (s, quaternary-C), 143.7 (s, quaternary-C), 142.6 (s, C -2), 142.0 (s, quaternary-C), 139.4 (s, quaternary-C), 139.3 (s, quaternary-C), 137.4 (s, quaternary-C), 1 31.4 (s, 2*Ar-C, overlap), 131.1 (s, 2*Ar-C, overlap), 130.7 (s, C-3), 130.3 (s, Ar-C), 129.7 (s, C-5), 12 9.5 (s, Ar-C), 128.7 (s, Ar-C), 125.8 (s, Ar-C), 125.4 (s, quaternary-C), 124.8 (s, 2*Ar-C, overlap), 124. 6 (s, 2*Ar-C, overlap), 124.4 (*J*_{C-F} = 272.7 Hz, *CF*₃), 124.3 (*J*_{C-F} = 273.7 Hz, *CF*₃), 121.4 (s, Ar-C), 11 8.5 (s, C-6), C-1, C-14 were not observed. HR-MS (*m*/*z*) calcd for [M]⁺ C₃₀H₁₈BF₆N: 517.1436; Found: 517.1435.

5, **6**-dipropyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (7). 7 was obtained as y -ellow-green solid (20%). ¹H NMR (400 MHz, CDCl₃): δ 8.81 (1H, br s, N*H*), 8.50 (1H, s, 2-C*H*), 8.30 (1H, d, *J* = 8.0 Hz, 3-C*H*), 7.93 (2H, t, *J* = 8.0 Hz, Ar-H).7.66 (1H, t, *J* = 8.0 Hz, Ar-H), 7.52-7.57 (2 H, m, Ar-H),7.45 (1H, t, *J* = 8Hz, Ar-H), 7.30 (1H, t, *J* = 8 Hz, Ar-H), 2.95-3.04 (4H, m, 17-C*H*₂ + 22-C*H*₂), 1.68-1.78 (4H, m, 18-C*H*₂ + 21-C*H*₂), 1.13-1.18 (6H, m, 19-C*H*₃ + 20-C*H*₃). ¹¹B NMR (128 MH z, CDCl₃): δ 22.4 (br, s). ¹³C NMR (101 MHz, CDCl₃): δ 142.6 (s, quaternary-C), 138.7 (s, quaternary-C), 138.1 (s, C-2), 136.7 (s, quaternary-C), 135.1 (s, quaternary-C), 130.4 (s, C-3), 130.2 (s, C-11), 12 9.5 (s, C-5), 128.2 (s, C-4), 125.6 (s, quaternary-C), 125.6 (s, Ar-C), 124.4 (s, Ar-C), 120.9 (s, Ar-C), 11 8.2 (s, C-6), 32.5 (s, CH₂), 31.2 (s, CH₂), 24.2 (s, CH₂), 23.6 (s, CH₂), 15.0 (s, CH₃), 14.9 (s, CH₃), C-1, C-14 were not observed. HR-MS (*m*/*z*) calcd for [M]⁺ C₂₂H₂₄BN: 314.2080; Found: 314.2078.

3-methyl-5, 6-diphenyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (8). 8 was ob -tained as yellow-green solid (66%). ¹H NMR (400 MHz, CDCl₃): δ 8.81 (1H, br s, N*H*), 8.23 (1H, d, *J* = 4Hz, Ar-H), 7.89 (1H, s, 2-C*H*, Ar-H), 7.62 (1H, d, *J* = 4Hz, Ar-H), 7.44-7.52 (2H, m, Ar-H), 7.27 (1H, d, *J* = 4Hz, Ar-H), 7.04-7.16 (12H, m, Ar-H). ¹¹B NMR (128 MHz, CDCl₃): δ 29.2 (br, s). ¹³C NM R (101 MHz, CDCl₃): δ 143.3 (s, quaternary-C-7), 142.1 (s, CH), 141.3 (s, quaternary-C), 140.4 (s, quaternary-C), 140.4 (s, quaternary-C), 140.4 (s, quaternary-C), 131.2 (s, 2*CH, overlap), 131.0 (s, 2*CH, overlap), 130.6 (s, C-3), 129.5 (s, C-4), 129.4 (s, C-5), 128.7 (s, Ar-C), 127.5 (s, 2*Ar-C, overlap), 127.3 (s, 2*Ar-C, overlap), 126.4 (s, Ar-C), 126.0 (s, Ar-C), 125.9 (s, Ar-C), 125.5 (s, quaternary-C), 120.9 (s, Ar-C), 118.3 (s, C-6), 22.2 (s, C-25), C-1, C-14 were not observed. HR-MS (*m/z*) calcd for [M+Na]⁺C₂₉H₂₂BN :418.1743; Found: 418.1740.

3-fluoro-5, 6-diphenyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (9). 9 was obt -ained as yellow-green solid (45%). ¹H NMR (400 MHz, CDCl₃): δ 8.91 (1H, br s, N*H*), 8.40 (1H, t, *J* = 8 Hz, 5-C*H*), 8.05 (s, 2-C*H*), 7.74 (1H, d, *J* = 8 Hz, 3-C*H*), 7.57-7.64 (2H, m, Ar-H), 7.15-7.29 (12H, m, Ar-H), 7.03-7.06 (1H, d, *J* = 12 Hz, Ar-H). ¹¹B NMR (128 MHz, CDCl₃): δ 29.4 (s, br). ¹⁹F NMR (376 MHz, CDCl₃): -109.2. ¹³C NMR (101 MHz, CDCl₃): δ 164.3 (d, quaternary-C, *J*_{C-F} = 248.5 Hz, C -11), 145.7 (d, quaternary-C-13, *J*_{C-F} = 8.1 Hz), 143.0 (s, C-2), 141.6 (s, quaternary-C), 140.7 (s, quater nary-C), 139.9 (s, quaternary-C), 139.3 (s, quaternary-C), 137.7 (d, quaternary-C-16, *J*_{C-F} = 2.0 Hz), 13 1.5 (d, *J*_{C-F} = 8.1 Hz, C-9), 131.0 (s, 2*Ar-C, overlap), 130.8 (s, 2*Ar-C, overlap), 130.7 (s, Ar-C), 129. 1 (s, Ar-C), 127.8(s, 2*Ar-C, overlap), 127.4 (s, 2*Ar-C, overlap), 126.4 (s, Ar-C), 126.1 (s, Ar-C), 12 5.4 (s, quaternary-C), 121.1 (s, Ar-C), 118.4 (s, CH, C-6), 115.0 (d, *J*_{C-F} = 21.2 Hz, Ar-C), 112.8 (d, *J*_{C-F} = 22.2 Hz, Ar-C), C-1, C-14 were not observed. HR-MS (m/z) calcd for [M]⁺C₂₈H₁₉BFN: 395.1595; F ound: 395.1593.

12-benzyl-5, 6-diphenyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (10). 10 was obtained as yellow-green solid (55%).¹H NMR (400 MHz, CDCl₃): δ 8.24 (1H, d, *J* = 8Hz, Ar-H), 8.0 2 (1H, s, 2-*CH*), 7.71 (1H, d, *J* = 8 Hz, 3-*CH*), 7.57 (1H, d, *J* = 8 Hz, Ar-H), 7.06-7.48 (20H, m, Ar-H), 6.49 (1H, d, *J* = 16Hz, 25-*CH*₂), 5.61(1H, d, *J* = 20Hz, 25-*CH*₂). ¹¹B NMR (128 MHz, CDCl₃): δ 33.4 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 144.3 (s, quaternary-C), 142.9 (s, C-2), 141.7 (s, quaternary-C), 148.5 (s, quaternary-C), 140.44 (s, quaternary-C), 140.40 (s, quaternary-C), 138.6 (s, quaternary-C), 138.5 (s, quaternary-C), 131.5 (s, Ar-C), 131.2 (s, Ar-C), 130.9 (s, Ar-C), 129.6 (s, Ar-C), 129.29 (s, Ar-C), 129.25 (s, Ar-C), 129.23 (s, Ar-C, overlap), 127.6 (s, Ar-C), 127.4 (s, Ar-C), 127.3 (s, Ar-C), 121.0 (s, Ar-C), 116.7 (s, Ar-C), 55.5 (s, *CH*₂, C-25), C-1, C-14 were not observed. HR-MS (*m/z*) calcd for [M]⁺ C₃₅H₂₆BN:471.2158; Found: 471.2155.

12-butyl-5, 6-diphenyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (11). 11 was o -btained as yellow-green solid (51%). ¹H NMR (400 MHz, CDCl₃): δ 8.57 (1H, d, *J* = 8 Hz, Ar-H), 7.9 5 (1H, s, 2-CH), 7.88 (1H, d, *J* = 8 Hz, Ar-H), 7.64-7.71 (2H, m, Ar-H), 7.47-7.55 (2H, m, Ar-H), 7.39-7.41 (1H, m, Ar-H), 7.13-7.24 (11H, m, Ar-H), 5.15 (1H, s, 25-CH₂), 4.46 (1H, s, 25-CH₂), 2.24-2.39 (2H, m, 26-CH₂), 1.76-1.77 (2H, m, 27-CH₂), 1.12 (3H, t, *J* = 6 Hz, 28-CH₃). ¹¹B NMR (128 MHz, CD Cl₃): δ 30.1 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 144.5 (s, quaternary-C), 142.6 (s, C-2), 141.7 (s, qu aternary-C), 141.4 (s, quaternary-C), 140.6 (s, quaternary-C

ry-C), 133.438 (s, Ar-C), 131.5 (s, Ar-C), 131.0 (s, Ar-C), 129.5 (s, C-5), 129.3 (s, C-4), 129.2 (s, Ar-C), 127.6 (s, Ar-C, overlap), 127.3 (s, Ar-C), 126.2 (s, quaternary-C), 126.0 (s, Ar-C), 125.9 (s, Ar-C), 125.1 (s, Ar-C), 120.6 (s, Ar-C), 115.4 (s, C-6), 49.2 (s, C-25), 32.1 (s, C-26), 20.3 (s, C-27), 14.1 (s, C-28), C-1, C-14 were not observed. HR-MS (*m/z*) calcd for [M]⁺ C₃₂H₂₈BN: 437.2315; Found: 437.231 2.

12-benzyl-10-methyl-5, 6-diphenyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2]azaborinine (**12). 12** was obtained as yellow-green solid (58%). ¹H NMR (400 MHz, CDCl₃): δ 8.22 (1H, d, *J* = 8H z, Ar-H), 8.00 (1H, s, 2-C*H*), 7.60 (1H, d, *J* = 4 Hz, Ar-H), 7.36-7.44 (8H, m, Ar-H), 7.06-7.25 (12H, m, Ar-H), 6.45 (1H, d, *J* = 16 Hz, 25-C*H*₂), 5.59 (1H, d, *J* = 16 Hz, 25-C*H*₂), 2.40 (3H, s, C*H*₃). ¹¹B N MR (128 MHz, CDCl₃): δ 31.4 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 144.3 (s, quaternary-C), 142.9 (s, C-2), 142.0 (s, quaternary-C) , 141.7 (s, quaternary-C), 140.6 (s, quaternary-C), 140.6 (s, quaternary-C), 139.8 (s, quaternary-C), 138.7 (s, quaternary-C), 137.9 (s, quaternary-C), 133.6 (s, Ar-C), 131.6 (s, Ar-C), 131.3 (s, Ar-C), 131.1 (s, Ar-C), 130.9 (s, Ar-C), 129.4 (s, Ar-C), 129.2 (s, Ar-C, overlap), 127. 6 (s, Ar-C, overlap), 127.4 (s, Ar-C), 127.3 (s, Ar-C), 126.3 (s, Ar-C, overlap), 126.0 (s, Ar-C), 125.9 (s, Ar-C), 125.1 (s, Ar-C), 124.2 (s, quaternary-C), 122.7 (s, Ar-C), 116.7 (s, C-6), 54.4 (s, C-25), 22.6 (s, C-29), C-1, C-14 were not observed. HR-MS (*m*/*z*) calcd for [M]⁺ C₃₆H₂₈BN: 485.2315; Found: 485.2312; 12.

12-benzyl-5, 6-bis(4-methoxyphenyl)-10-methyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (13). 13 was obtained as yellow-green solid (61%). ¹H NMR (400 MHz,CDCl₃): δ 8.20 (1 H, d, *J* = 8 Hz, 3-C*H*), 8.01 (1H, s, 2-C*H*), 7.61 (1H, d, *J* = 8 Hz, 4-C*H*), 7.35-7.43 (8H, m, Ar-H), 7.21

-7.25 (2H, m, Ar-H), 6.76-7.13 (8H, m, Ar-H), 6.45 (1H, d, J = 20Hz, 25- CH_2), 5.58 (1H, d, J = 16 Hz, 25- CH_2), 3.78-3.81 (6H, d, 30- OCH_3 + 31- OCH_3), 2.40 (3H, s, CH_3). ¹¹B NMR (128 MHz, CDCl₃): δ 34.0 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 157.6 (s, quaternary-C, C-20 or C-21), 157.5 (s, quaternary -C, C-21 or C-20), 144.8 (s, quaternary-C), 142.7 (s, CH, C-2), 141.6 (s, quaternary-C), 140.4 (s, quater nary-C), 139.7 (s, quaternary-C), 138.7 (s, quaternary-C), 137.7 (s, quaternary-C), 134.2 (s, quaternary-C), 133.5 (s, CH), 133.0 (s, quaternary-C), 132.5 (s, Ar-C), 132.2 (s, Ar-C), 131.8 (s, Ar-C), 131.0 (s, A r-C), 129.4 (s, Ar-C), 129.2 (s, Ar-C, overlap), 129.1 (s, Ar-C), 127.2 (s, Ar-C), 126.2 (s, Ar-C, overlap), 124.9 (s, Ar-C), 124.2 (s, quaternary-C), 122.6 (s, Ar-C), 116.6 (s, Ar-C), 113.1 (s, Ar-C), 55.1 (s, ov erlap, C-30 + C-31), 54.3 (s, C-25), 22.5 (s, C-29). HR-MS (m/z) calcd for [M]⁺ C₃₈H₃₂BNO₂: 545.2528.

12-benzyl-8-fluoro-5, 6-diphenyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (1 4). 14 was obtained as yellow-green solid (31%). ¹H NMR (400 MHz, CDCl₃): δ 8.33 (1H, s, 2-C*H*), 8. 20 (1H, d, *J* = 8 Hz, Ar-H), 6.91-7.44 (21H, m, Ar-H), 6.47 (1H, d, *J* = 20 Hz, 25-C*H*₂), 5.56 (1H, d, *J* = 20 Hz, 25-C*H*₂). ¹¹B NMR (128 MHz, CDCl₃): δ 31.4 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 160.2 (d, *J*_{C-F} = 252.5 Hz, quaternary-C, C-3), 144.5 (s, quaternary-C), 142.7 (d, *J*_{C-F} = 5.1 Hz, quaternary-C, C-7), 141.4 (s, quaternary-C), 140.5 (s, quaternary-C), 140.1 (s, quaternary-C), 139.1 (s, quaternary-C), 138.3 (s, quaternary-C), 134.1 (d, *J*_{C-F} = 7.1 Hz, C-2), 133.6 (s, Ar-C), 131.4 (s, Ar-C), 131.1 (s, Ar-C), 130.8 (s, Ar-C), 129.8 (s, Ar-C), 129.4 (s, Ar-C), 129.3 (Ar-C, overlap), 128.8 (d, *J*_{C-F} = 10.1 Hz, C-5), 127.6 (s, Ar-C), 127.5 (s, Ar-C), 126.2 (Ar-C, overlap), 126.1 (s, Ar-C), 125.4 (s, Ar-C), 116.3 (d, *J*_{C-F} = 16.2 Hz, quaternary-C, C-8), 112.6 (d, *J*_{C-F} = 3.0 Hz, C-6), 106.2 (d, *J*_{C-F} = 21.2 Hz, C-4), 54.9 (s, C-2 5). HR-MS (*m*/*z*) calcd for [M]⁺ C₃₅H₂₅BFN: 489.2064; Found: 489.2062.

4, **5**-diphenyl-11 H-benzo[e]thieno[3', 2': 5, 6]borinino[1, 2-b][1, 2] azaborinine (15). 15 was obt -ained as yellow-green solid (23%). ¹H NMR (400 MHz, CDCl₃): δ 8.79 (1H, s br, N*H*), 8.24 (1H, s, 2-*CH*), 7.74 (1H, d, *J* = 8 Hz, Ar-H), 7.69 (1H, d, *J* = 4 Hz, Ar-H), 7.58-7.62 (2H, m, Ar-H), 7.11-7.27 (1 2H, m, Ar-H). ¹¹B NMR (128 MHz, CDCl₃): δ 27.7 (s, br). ¹³C NMR (101 MHz, CDCl₃): δ 151.1 (s, qu aternary-C), 144.7 (s, C-2), 141.6 (s, quaternary-C), 139.7 (s, quaternary-C), 139.1 (s, quaternary-C), 1 38.2 (s, quaternary-C), 135.1 (s, quaternary-C), 131.4 (s, 2*Ar-C, overlap), 130.9 (s, Ar-C), 130.6 (s, 2 *Ar-C, overlap), 130.0 (s, Ar-C), 129.3 (s, Ar-C), 129.2 (s, Ar-C), 127.5 (s, 2* Ar-C, overlap), 127.4 (s, 2*Ar-C, overlap), 126.2 (s, Ar-C), 126.1 (s, Ar-C), 125.1 (s, quaternary-C), 121.0 (s, Ar-C), 118.3 (s, C -6). HR-MS (*m/z*) calcd for [M]⁺ C₂₆H₁₈BNS: 387.1253; Found:387.1250.

2-bromo-5, 6-diphenyl-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (**16**). **16** was obtained as yellow-green solid (60%). ¹H NMR (400 MHz, CDCl₃): δ 8.91 (1H, s, N*H*), 8.84 (1H, s, 9-*CH*), 8.02 (1H, s, 2-*CH*), 7.72 (1H, d, *J* = 8 Hz, Ar-H), 7.57-7.60 (3H, m, Ar-H), 7.10-7.27 (12H, m, Ar -H). ¹¹B NMR (128 MHz, CDCl₃): δ 29.0. ¹³C NMR (101 MHz, CDCl₃): δ 142.9 (s, C-2), 141.6 (s, qua ternary-C), 140.8 (s, quaternary-C), 140.8 (s, quaternary-C), 139.9 (s, quaternary-C), 139.1 (s, quaterna ry-C), 137.6 (s, quaternary-C), 132.7(s, Ar-C), 132.1(s, Ar-C), 131.1 (s, 2*Ar-C, overlap), 130.83 (s, 2* Ar-C, overlap), 130.78 (s, Ar-C), 130.7 (s, Ar-C), 129.2 (s, Ar-C), 127.7 (s, 2*Ar-C, overlap), 127.4 (s, 2*Ar-C, overlap), 126.3 (s, Ar-C), 126.1 (s, Ar-C), 125.6 (s, quaternary-C), 121.4 (s, Ar-C), 119.9 (s, q uaternary-C), 118.5 (s, C-6).

5, 6-diphenyl-2-(phenylethynyl)-12 H-benzo[e]benzo[5, 6]borinino[1, 2-b][1, 2] azaborinine (17). 17 was obtained as yellow-green solid (82%). ¹H NMR (400 MHz, CDCl₃): δ 9.02 (1H, s, N*H*), 8.61 (1H, s, 9-C*H*), 8.04 (1H, s, 2-C*H*), 7.73 (1H, d, *J* = 8 Hz, 3-C*H*), 7.59-7.66 (5H, m, Ar-H), 7.32-7.39 (5H, m, Ar-H), 7.13-7.29 (10H, m, Ar-H). ¹¹B NMR (128 MHz, CDCl₃): δ 31.1. ¹³C NMR (101 MHz, CDCl₃): δ 142.8 (s, C-2), 142.6 (s, quaternary-C), 141.3 (s, quaternary-C), 140.9 (s, quaternary-C), 140.0 (s, quaternary-C), 139.3 (s, quaternary-C), 138.1 (s, quaternary-C), 132.9 (s, Ar-C), 132.6 (s, Ar-C), 131.7 (s, 2*Ar-C, overlap), 131.1 (s, 2*Ar-C, overlap), 130.9 (s, 2*Ar-C, overlap), 130.7 (s, Ar-C), 129.1 (s, Ar-C), 128.8 (s, Ar-C), 128.4 (s, 2*Ar-C, overlap), 128.3 (s, Ar-C), 127.7 (s, 2*Ar-C, overlap), 127.4 (s, 2*Ar-C, overlap), 126.2 (s, Ar-C), 126.1 (s, Ar-C), 125.655 (s, quaternary-C), 123.5 (s, quaternary-C), 121.2 (s, CH), 119.7 (s, quaternary-C), 118.5 (s, C-6), 90.3 (s, quaternary-C, C≡C), 90.1 (s, quaternary-C, C≡C). HR-MS (*m*/*z*) calcd for [M]⁺ C₃₆H₂₄BN: 481.2002; Found: 481.1998.

Table S1. Optimization of Cyclization Conditions

entry	cat	ligand	base	additive	time/h	yield ^c
1^a	5%Pd(OAc) ₂	10%P(Cy) ₃	100%Na ₂ CO ₃		24h	43%
2 ^a	5%[Cp*RhCl ₂] ₂		100%Na ₂ CO ₃		24h	0%
3 ^a	5%[RuCl ₂ (p-cymene)] ₂		100%Na ₂ CO ₃		24h	0%
4 ^a	10%Pd(OAc) ₂	20%P(Cy) ₃	100%Na2CO3		24h	50%
5 ^b	10%Pd(OAc) ₂	20%P(Cy) ₃	100%Na2CO3		24h	58%
6 ^b	10%Pd(OAc) ₂	20%P(Cy) ₃	200%Na ₂ CO ₃		24h	68%
7 ^b	10%Pd(OAc) ₂	20%P(Ph) ₃	200%Na ₂ CO ₃		24h	58%
8 ^b	10%Pd(OAc) ₂		200%Na ₂ CO ₃		24h	32%
9 ^b	10%Pd(OAc) ₂	20%P(Ph) ₃	200%Na2CO3	100%LiCl	24h	74%
10 ^b	10%Pd(OAc) ₂	20%P(Ph) ₃	200%Na ₂ CO ₃	100%LiCl	8h	73%
11 ^d	10%Pd(OAc) ₂	20%P(Ph) ₃	200%Na ₂ CO ₃	100%LiCl	8h	10%

^a $\mathbf{a}/\mathbf{2} = 1/1$, ^b $\mathbf{a}/\mathbf{2} = 1/1.5$. ^c Isolated yields . ^d Compound **1** as starting material.

X-ray Crystallographic Studies of Compound 3 and 17:

Data collections for compounds **3** and **17** were performed at 113 K on a Rigaku Saturn CCD diffractometer using graphite-monochromated MoK α radiation ($\lambda = 0.71073$ Å). The structures of **3** and **17** were solved by use of SHELXTL program^{S2}. Refinements were performed on F^2 anisotropically for all the non-hydrogen atoms by the full-matrix least-squaresmethod. CCDC numbers: 1406577 for compound **3** and 1406578 for compound **17**.

Figure S1. Molecular structure of **17.** Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and bond angles (deg) for **17**: B1–N11.417(5), B1–C8 1.526(5), B1–C16 1.542(5), C29–C30 1.200(4); N1–B1–C8116.6(3), N1–B1–C16 124.8(3), C8–B1–C16 118.6(3).

Table S2. Crystallographic data and structure refinement details for 3 and 17.

3	17

Empirical formula	C ₂₈ H ₂₀ BN	C ₃₆ H ₂₄ BN
Formula weight	381.25	481.37
Temperature	113(2) K	113(2) K
Wavelength	0.71073Å	0.71073 Å
Crystal system, space group	Triclinic, P-1	Triclinic, P-1
	a = 11.899(2) Å	a = 9.942(2) Å
	<i>b</i> =13.110(3) Å	b = 16.900(4) Å
Unit cell dimensions	c = 18.036(4) Å	c = 18.738(4) Å
	$\alpha = 73.51(3)$ deg.	$\alpha = 105.481(6) \text{ deg.}$
	$\beta = 89.05(3) \text{ deg.}$	$\beta = 92.118(4) \text{ deg.}$
	$\gamma = 64.38(3)$ deg.	$\gamma = 92.215(5) \text{ deg.}$
Volume	2414.0(8) Å ³	3028.2(12) Å ³
Z, Calculated density	4, 1.046 Mg/m ³	4, 1.056 Mg/m ³
Absorption coefficient	0.060 mm ⁻¹	0.060 mm ⁻¹
F(000)	796	1008
Crystal size	0.22 x 0.20 x 0.18 mm	0.220 x 0.180 x 0.160 mm
Theta range for data collection	1.19 to 27.98 deg	3.011 to 25.004 deg.
	-15<=h<=13,	-11<=h<=11,
Limiting indices	-17<=k<=17,	-20<=k<=20,
_	-23<=1<=23	-22<=1<=22
Reflections collected / unique	25245 / 11371 [<i>R</i> (int)= 0.0448]	33253/10571[<i>R</i> (int)=0.0712]
Completeness to theta $= 27.98$	97.7 %	(Completeness to theta =
		25.004) 99.1 %
Absorption correction	Semi-empirical from	Semi-empirical from
	equivalents	equivalents
Max. and min. transmission	0.9893 and 0.9870	1.000 and 0.887
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	11371 / 0 / 542	10571 / 2 / 692
Goodness-of-fit on F^2	0.952	1.060
Final <i>R</i> indices $[I > 2 \sigma(I)]$	R1 = 0.0693, wR2 = 0.192	R1 = 0.0769, wR2 = 0.1838
<i>R</i> indices (all data)	R1 = 0.1141, wR2 = 0.2158	R1 = 0.1450, wR2 = 0.2095
Extinction coefficient	0.013(2)	0.0007(9)

Figure S2. UV–vis spectra of **3-15**. All experiments were performed in CH_2Cl_2 solution at 10^{-5} M.

Figure S3. Normalized fluorescence emission spectra of **3-15**. All experiments were performed in CH_2Cl_2 solution at 10⁻⁶ M and $\lambda_{ex} = 383$ nm.

Figure S4. The fluorescence decay of **3** was measured in dichloromethane excited at 383 nm and emission was monitored at 430 nm.

Figure S5. The fluorescence decay of **4** was measured in dichloromethane excited at 384 nm and emission was monitored at 458 nm.

Figure S6. The fluorescence decay of **10** was measured in dichloromethane excited at 391 nm and emission was monitored at 460 nm.

Figure S7. The fluorescence decay of **12** was measured in dichloromethane excited at 394 nm and emission was monitored at 463 nm.

Figure S8. The fluorescence decay of **13** was measured in dichloromethane excited at 396 nm and emission was monitored at 466 nm.

Figure S9. The fluorescence decay of **14** was measured in dichloromethane excited at 392 nm and emission was monitored at 468 nm.

Figure S10. The fluorescence decay of **15** was measured in dichloromethane excited at 390 nm and emission was monitored at 460 nm.

Cyclic Votammetry. All measurements were carried out at room temperature with a conventional three-electrode (glassy carbon electrode as the working electrode, saturated calomel electrode (SCE) as the reference electrode, and a platinum wire as the auxiliary electrode) with ferrocene/ferrocenium redox couple (Fc/Fc^+) as an internal reference

Figure S11. Cyclic voltammograms of 2 mM **3** measured in CH_2Cl_2 solution, containing 0.1 M TBAPF₆ as the supporting electrolyte at room temperature. Ferrocene/ferrocenium redox couple (Fc/Fc⁻) was used as an internal reference and the scan rate at 100 mVs⁻¹.

DFT Calculations. All calculations carried out on **3** and **3'** were performed using the Gaussian 03 suite of programs, revision C. 02.^{S3} The structures of **3** and **3'** were optimized at the RB3LYP/6-311+G (d, p) level of theory, using the geometry obtained from X-ray single crystal analysis and verified by harmonic vibrational analysis. TD-DFT calculations were carried out at the RTD-B3LYP/6-311G (d, p)

level of theory.

Figure S12.Calculated UV-vis absorption for 3

Figure S13. Optimized geometry of **3**. Selected bond parameters: B22-N49 1.42842, B22-C1 1.53054, B22-C7 1.54056, N49-B22-C7 124.722252, N49-B22-C1 116.46935, C1-B22-C7 118.80810.

Figure S14. Optimized geometry of 3'.

Table S3. Cartesian coordinates for reorganization energy

3

Center Atomi		mic At	omic	Coordinates (Angstroms)		
Num	lber	Number	Туре	Х	Y Z	Z
1	6	0	1.077853	-0.124837	0.018526	 5
2	6	0	-0.355909	-0.394940	-0.015332	2
3	6	0	3.876868	0.526651	0.115708	3
4	6	0	-0.798257	-1.834307	-0.05097	7
5	6	0	-0.871784	2.056403	-0.035890	5
6	6	0	-1.261515	0.618325	-0.005459	9
7	6	0	0.491085	2.448935	0.054850)
8	6	0	2.027313	-1.108739	0.005895	5
9	6	0	-2.729787	0.325643	0.026843	3
10	6	0	3.429606	-0.812075	0.03030	2
11	6	0	-3.464824	0.182582	-1.14268	0
12	6	0	-1.522410	4.383098	-0.26971	2
13	6	0	-0.900053	-3.946389	-1.23415	9
14	6	0	4.397499	-1.835265	-0.03137	7
15	6	0	-1.615669	-3.820063	1.05571	4
16	6	0	5.246587	0.789260	0.16567	3
17	6	0	5.739424	-1.559900	0.00434	7
18	6	0	0.791096	3.814477	0.00576	0
19	6	0	-1.862569	3.043395	-0.19811	8
20	6	0	6.160671	-0.221764	0.10636	3
21	6	0	-4.832561	-0.047946	-1.09881	7
22	5	0	1.550531	1.328478	0.09861	9
23	6	0	-0.604549	-2.593714	-1.20515	2
24	6	0	-1.312941	-2.463471	1.07125	0
25	6	0	-5.466686	-0.166916	0.13975	9
26	6	0	-3.381476	0.231319	1.25106	4
27	6	0	-1.401324	-4.563728	-0.08749	13
28	6	0	-4.746758	-0.033176	1.29720	17
29	6	0	-0.191095	4.780696	-0.15722	4
30	1	0	1.747733	-2.017111	-0.01931	2

31	1	0	-3.026366	0.243748	-1.983734
32	1	0	-2.201759	5.035640	-0.396000
33	1	0	-0.764300	-4.449025	-2.028080
34	1	0	4.113058	-2.737602	-0.100046
35	1	0	-1.969635	-4.235273	1.833874
36	1	0	5.548324	1.687727	0.242270
37	1	0	6.375471	-2.262948	-0.039705
38	1	0	1.695622	4.089348	0.086328
39	1	0	-2.775517	2.786720	-0.259502
40	1	0	7.088586	-0.020079	0.134991
41	1	0	-5.331192	-0.124933	-1.902463
42	1	0	-0.263225	-2.174058	-1.987241
43	1	0	-1.462729	-1.959218	1.862271
44	1	0	-6.399707	-0.342032	0.178251
45	1	0	-2.894380	0.347275	2.057776
46	1	0	-1.595066	-5.494194	-0.092166
47	1	0	-5.182762	-0.121695	2.137339
48	1	0	0.041341	5.701378	-0.192175
49	7	0	2.948504	1.558444	0.156399
50	1	0	3.357313	2.453509	-0.021746

Table S4. Cartesian coordinates for reorganization energy

3'

Center	enter Atomic		omic	Coordinates (Angstroms)		
Num	ber	Number	Туре	Х	Y Z	
						-
1	6	0	1.084914	-0.121180	0.019076	
2	6	0	-0.348145	-0.394946	-0.015094	
3	6	0	3.882235	0.537453	0.116884	
4	6	0	-0.786802	-1.835435	-0.051034	
5	6	0	-0.870287	2.055071	-0.035395	
6	6	0	-1.256343	0.615997	-0.005243	
7	6	0	0.491555	2.451076	0.055668	
8	6	0	2.036891	-1.102648	0.006479	
9	6	0	-2.723868	0.319554	0.026737	
10	6	0	3.438416	-0.802400	0.031196	
11	6	0	-3.458315	0.174785	-1.142946	

12	6	0	-1.526821	4.380129	-0.268991
13	6	0	-0.882970	-3.947596	-1.234547
14	6	0	4.408935	-1.823102	-0.030451
15	6	0	-1.599340	-3.823440	1.055209
16	6	0	5.251268	0.803559	0.167147
17	6	0	5.750144	-1.544309	0.005569
18	6	0	0.788080	3.817389	0.006836
19	6	0	-1.863564	3.039550	-0.197658
20	6	0	6.167946	-0.205114	0.107861
21	6	0	-4.825467	-0.059248	-1.099375
22	6	0	-0.590934	-2.594173	-1.205285
23	6	0	-1.300087	-2.466080	1.071003
24	6	0	-5.459519	-0.180023	0.139063
25	6	0	-3.375545	0.223382	1.250821
26	6	0	-1.382876	-4.566385	-0.088067
27	6	0	-4.740154	-0.044612	1.296667
28	6	0	-0.196549	4.781116	-0.156192
29	1	0	1.759640	-2.011729	-0.018914
30	1	0	-3.019857	0.237198	-1.983907
31	1	0	-2.207813	5.030949	-0.395311
32	1	0	-0.745781	-4.449765	-2.028516
33	1	0	4.126817	-2.726153	-0.099306
34	1	0	-1.952389	-4.239669	1.833241
35	1	0	5.550690	1.702783	0.243934
36	1	0	6.387996	-2.245721	-0.038467
37	1	0	1.691885	4.094562	0.087615
38	1	0	-2.775841	2.780548	-0.259253
39	1	0	7.095337	-0.001060	0.136694
40	1	0	-5.323746	-0.137391	-1.903127
41	1	0	-0.250537	-2.173530	-1.987247
42	1	0	-1.451314	-1.962329	1.862070
43	1	0	-6.392095	-0.357532	0.177352
44	1	0	-2.888899	0.340464	2.057643
45	1	0	-1.574236	-5.497342	-0.092913
46	1	0	-5.176089	-0.134370	2.136704
47	1	0	0.033537	5.702395	-0.190963
48	6	0	2.951226	1.566861	0.157551
49	1	0	3.405418	2.516335	-0.035085

Figure S15.Calculated UV-vis absorption for 3'

3 Bq Isotropic = 2.6456, NICS(1) = -2.6456. **6** Bq Isotropic = 7.2765, NICS(1) = -7.2765, **9** Bq Isotropic = 10.0142, NICS(1) = -10.0142, **12** Bq Isotropic = 10.4429, NICS(1) = -10.4429, **15** Bq Isotropic = 10.0811, NICS(1) = -10.0811, **17** Bq Isotropic = 9.1955, NICS(1) = -9.1955.

2 Bq Isotropic = 5.3250, NICS(1) = -5.3250, **5** Bq Isotropic = 9.8588,NICS(1) = -9.8588, **9** Bq Isotropic = 11.9530, NICS(1) = -11.9530, **12** Bq Isotropic = 10.1199, NICS(1) = -10.1199, **15** Bq Isotropic = 9.2058, NICS(1) = -9.2058, **18** Bq Isotropic = 10.0280, NICS(1) = -10.0280. *Figure S16.* NICS(1)zz values (in ppm) of **3** (up) and **3'** (down) calculated at the GIAO-B3LYP16-311+G(d.p) level.

Reference

- S1 S. R. Wisniewski, C. L. Guenther, O. A. Argintaru, G. A. Molander. J. Org. Chem. 2014, 79, 365.
- S2 G. M. Sheldrick. SHELXS-90/96, Program for Structure Solution, Acta. Crystallogr. Sect. A 1990, 46, 467.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, Jr., K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.

Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian* 03, *Revision* C.02, Gaussian, Inc., Wallingford CT, **2004**.

Scanned NMR Spectra of All New Compounds

S34

Varian ProMALDI File: hhn-20150824-2_MALDI.trans

