Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Enantioselective Bromocyclization of 2-Geranylphenols Induced by Chiral Phosphite–Urea Bifunctional Catalysts

Yasuhiro Sawamura,[†] Yoshihiro Ogura[†], Hidefumi Nakatsuji,^{†,§}

Akira Sakakura,*^{,‡} Kazuaki Ishihara*^{,†}

[†]Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

[‡]Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan

Table of Contents

General Methods	S2
Synthesis of Phosphite–Urea Bifunctional Catalysts 8a–8d, 9, and 10	S3–S7
Preparation of Substrates 5a–5f, 17, and 19	S8–S9
Typical Procedure for the Enantioselective Bromocyclization Induced by	
Phosphite–Urea Bifunctional Catalysts	S10–S14
Determination of Absolute Configuration	S15
Procedure for Control Experiment with 17 or 19	S16–S18
Author Information and References	S19
¹ H, ¹³ C, ¹⁹ F, and ³¹ P NMR Charts	S20–S42

General Methods. IR spectra were recorded on a JASCO FT/IR-460 plus spectrometer. $^{1}\mathrm{H}$ spectra were measured on a JEOL ECS-400 spectrometer (400 MHz) at ambient temperature. Chemical shifts are reported in ppm from the solvent resonance (acetone- d_6 : 2.05 ppm, CD₃OD: 3.31 ppm, THF-d₈: 1.73 ppm) or Me₄Si resonance (0.00 ppm; CDCl₃) as the internal standard. Data were recorded as follows: chemical shift, multiplicity (s = singlet; d = doublet; t =triplet; q = quartet; sept = septet; m = multiplet, br = broad), coupling constant (Hz), and integration. ¹³C NMR spectra were measured on a JEOL ECS-400 (100 MHz). Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (CDCl₃: 77.00 ppm, acetone- d_6 : 29.84 ppm, THF- d_8 : 25.30 ppm). ¹⁹F NMR spectra (376 MHz) and ³¹P NMR spectra (162 MHz) were measured on a JEOL ECS-400 spectrometer. High-performance liquid chromatography (HPLC) analysis was conducted using Shimadzu LC-10 AD coupled diode array-detector SPD-MA-10A-VP and chiral column of Daicel Chiralcel OD-3 (4.6 mm \times 25 cm), Daicel Chiralcel AD-3 (4.6 mm × 25 cm), or Daicel Chiralpack IB-3 (4.6 mm × 25 cm). For TLC analysis, Merck precoated TLC plates (silica gel 60 F₂₅₄ 0.25 mm) were used. For preparative column chromatography, Merck silica gel 60 (0.040–0.063 mm) was used. High resolution mass spectral analysis (HRMS) was performed at Chemical Instrument Facility, Nagoya University. Dry dichloromethane and tetrahydrofurane were purchased from Kanto as the "anhydrous" and stored under nitrogen. Dry acetonitrile was purchased from Wako as the "anhydrous" and stored under nitrogen. Dry toluene was distilled fractionally from CaH₂ and used immediately. Other materials were obtained from commercial supplies and used without further purification.

Synthesis of Phosphite–Urea Bifunctional Catalysts 8a-8e and 9

Synthesis of 8a-c

1-(4-(((11b*R*)-2,6-Bis(3,5-bis-(trifluoromethyl)phenyl)dinaphtho[2,1-*d*:1',2'-*f*][1,3,2]dioxaphosphepin-4-yl)oxy)phenyl)-3-(3,5-bis(trifluoromethyl)phenyl)urea (8a): To a suspension of S1a¹ (923 mg, 1.3 mmol) and 1*H*-tetrazole (273 mg, 3.9 mmol, 3.0 equiv) in dry THF (15 mL) was added N,N,N',N'',N''-hexamethylphosphinetriamine (HMPT) (424 mg, 3.4 mmol, 2.6 equiv). The reaction mixture was heated at reflux for 5 h, cooled to room temperature, and filtered through a Celite pad. The filtrate was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane-toluene = 3:1) to give S2a (968 mg, 95% yield).

To a solution of **S2a** (392 mg, 0.50 mmol) and *N*-phenylimidazolium trifluoromethanesulfonate salt (162 mg, 0.55 mmol, 1.1 equiv) in dry CH₃CN (5 mL) was added 4-aminophenol (71 mg, 0.65 mmol, 1.3 equiv). The reaction mixture was stirred at room temperature for 13 h, filtered through a Celite pad, and the filtrate was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane-toluene = $4:1 \rightarrow 2:1 \rightarrow 1:1 \rightarrow 1:2$) to give **S3a** (339 mg, 80% yield).

To a solution of S3a (339 mg, 0.4 mmol) in CH₂Cl₂ (4 mL) was added 1-isocyanato-3,5-bis(trifluoromethyl)benzene (153 mg, 0.60 mmol, 1.5 equiv). The reaction mixture was stirred at room temperature and insoluble urea starts to precipitate as a colorless solid. The reaction mixture was diluted with hexane, then the solid was filtered off and washed with hexane to give **8a** (350 mg, 79% yield). Colorless solid; $[\alpha]^{25}_{D}$ -96.8 (c 1.00, THF); IR (KBr) 1643, 1577, 1508, 1473, 1381, 1326, 1279, 1176, 1136, 1083, 987 cm⁻¹; ¹H NMR (400 MHz, THF-d₈) δ 8.43 (s, 2H), 8.40–8.29 (m, 5H), 8.40–8.18 (m, 6H), 7.99 (s, 1H), 7.62–7.53 (m, 3H), 7.50–7.37 (m, 4H), 7.18 (d, J = 8.7 Hz, 2H), 6.20 (d, J = 8.7 Hz, 2H); ¹³C NMR (100 MHz, THF- d_8) δ 152.8, 147.2, 147.1, 145.6 (d, $J_{C-P} = 2.9$ Hz, 2C), 144.9 (d, $J_{C-P} = 2.9$ Hz, 2C), 143.1, 141.5, 140.8, 136.9, 130.4, 133.7, 132.8, 132.66, 132.65 (q, $J_{C-F} = 33.4$ Hz, 2C), 132.4, 132.34 (q, $J_{C-F} = 32.4$ Hz, 2C), 132.30 (q, $J_{C-F} = 32.4$ Hz, 2C), 132.0, 131.6 (2C), 131.4(2C), 129.9, 129.8, 128.3, 128.1, 127.6, 127.5, 127.1, 126.9, 126.5, 126.4, 125.2, 124.6 (q, $J_{C-F} = 272$ Hz, 6C), 122.4, 122.1, 120.7 (2C), 119.9 (d, $J_{C-P} = 8.6$ Hz, 2C), 118.8 (2C), 115.5; ¹⁹F NMR (376 MHz, THF- d_8) δ -63.3, -63.7; ³¹P NMR (162 MHz, THF-d₈) δ 145.7; HRMS (FAB+) calcd for C₅₁H₂₅F₁₈N₂O₄P⁺ [M]⁺ 1102.1265, found 1102.1269.

1-(4-(((11b*R***)-2,6-Bis(3,5-bis(pentafluor-o-λ⁶-sulfanyl)phenyl)dinaphtho[2,1-***d***:1',2'-***f***][1,3,2]dioxaphosphepin-4-yl)oxy)phenyl)-3-(3,5-bis(trifluoromethyl)phenyl)urea (8b): Compound 8b was prepared from S1b² according to the same manner as 8a. Pale yellow solid; [α]^{22}_{D} –51.8 (***c* **1.00, THF); IR (KBr) 1508, 1388, 1281, 1187, 1139 cm⁻¹; ¹H NMR (400 MHz, acetone-***d***₆) δ 8.72 (s, 1H), 8.64 (d,** *J* **= 1.8 Hz, 2H), 8.55 (s, 1H), 8.54 (d,** *J* **= 1.8 Hz, 2H), 8.50 (s, 1H), 8.42 (t,** *J* **= 1.8 Hz, 1H), 8.38 (s, 1H), 8.34 (t,** *J* **= 1.8 Hz, 1H), 8.26 (d,** *J* **= 8.2 Hz, 1H), 8.22 (d,** *J* **= 8.2 Hz, 1H), 8.18 (s, 2H), 7.70–7.62 (m, 2H), 7.61 (s, 1H), 7.56–7.39 (m, 4H), 7.29 (d,** *J* **= 8.7 Hz, 2H), 6.20 (d,** *J* **= 8.7 Hz, 2H); ¹³C NMR (100 MHz, acetone-***d***₆) δ 153.9 (quintet,** *J***_{C-F} = 18.1 Hz), 153.0, 147.0, 146.9, 145.1 (d,** *J***_{C-F} = 3.8 Hz), 144.4, 142.9, 141.4, 140.8, 136.8, 133.9, 133.7, 133.1, 132.6, 132.5, 132.4 (q,** *J***_{C-F} = 32.4 Hz), 132.2, 132.0, 131.6, 131.5, 130.2, 128.7, 128.6, 127.44, 127.37, 127.3, 127.2, 126.23, 126.17, 125.0, 124.5 (q,** *J***_{C-F} = 271 Hz), 123.8, 123.7, 120.9, 119.4 (d,** *J***_{C-F} = 9.5 Hz),** 119.1, 115.6; ¹⁹F NMR (376 MHz, acetone- d_6) δ 81.5 (quintet, J = 150 Hz), 63.1, 62.6, -63.5; ³¹P NMR (162 MHz, acetone- d_6) δ 145.8; HRMS (ESI–) calcd for C₄₇H₂₄F₂₆N₂O₄PS₄ [M–H]⁻ 1332.9947, found 1332.9957.

1-(3,5-Bis(trifluoromethyl)phenyl)-3-(4-(((11b*R***)-9,14-dibromo-2,6-bis(triphenylsilyl)dinaphth o[2,1-***d***:1',2'-***f***][1,3,2]dioxaphosphepin-4-yl)oxy)phenyl)urea (8c): Compound 8c was prepared from S1c³ according to the same manner as 8a. Colorless solid; [\alpha]^{22}_{D} –168.9 (***c* **1.00, CHCl₃); IR (KBr) 1560, 1506, 1475, 1429, 1387, 1279, 1184, 1136, 1108 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.91 (d,** *J* **= 1.8 Hz, 1H), 7.82 (s, 2H), 7.81 (s, 1H), 7.59–7.48 (m, 13H), 7.38 (dd,** *J* **= 9.2, 1.9 Hz, 1H), 7.34 (t,** *J* **= 7.3 Hz, 6H), 7.29–7.19 (m, 13H), 7.13 (d,** *J* **= 9.2 Hz, 1H), 7.05 (d,** *J* **= 9.2 Hz, 1H), 6.83 (s, 1H), 6.69 (d,** *J* **= 8.7 Hz, 2H), 6.48 (s, 1H), 5.77 (d,** *J* **=8.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 152.2, 152.1, 148.2, 140.2, 139.6, 139.7, 136.7, 136.4, 134.0, 133.1, 132.7, 132.3 (q,** *J***_{C-F} = 33.4 Hz), 132.0, 131.9, 131.4, 130.71, 130.65, 130.5, 129.7, 129.5, 129.2, 128.5, 128.4, 128.3, 128.0, 127.7, 123.1, 123.0, 123.0 (q,** *J***_{C-F} = 272 Hz), 122.9, 122.6, 121.6 (d,** *J***_{C-} P = 6.7 Hz), 119.0, 118.8, 116.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –62.9; ³¹P NMR (162 MHz, CDCl₃) δ 148.3; HRMS (ESI–) calcd for C₇₁H₄₆Br₂F₆N₂O₄PSi₂⁻ [M–H]⁻ 1349.1010, found 1349.1021.**

Synthesis of 8d

(11bR)-2,6-Bis(3,5-bis(trifluoromethyl)phenyl)-4-phenoxydinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine (8d): To a solution of S2a (235 mg, 0.30 mmol) and 1*H*-tatrazole (105 mg, 1.50 mmol, 5.0 equiv) in dry toluene (3 mL) was added phenol (36.7 mg, 0.39 mmol, 1.3 equiv). The reaction mixture was stirred at room temperature for 13 h under reflux condition. After the stirring, the reaction mixture was filtered through a Celite pad, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane-toluene = 15:1) to give **8d** (201 mg, 80% yield). $[\alpha]^{28}{}_{\rm D}$ -106.9 (c 1.00, CHCl₃); IR (KBr) 1378, 1280, 1175, 1135, 882 cm⁻¹; ¹H NMR (400 MHz, CHCl₃) δ 8.23 (s, 2H), 8.14 (s, 1H), 8.12 (s, 2H), 8.07 (s, 1H), 8.06 (d, J = 6.8 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.93 (s, 1H), 7.83 (s, 1H), 7.61–7.50 (m, 3H), 7.49–7.35 (m, 3H), 7.05–6.92 (m, 3H), 6.26 (d, J = 8.0 Hz, 2H); δ^{13} C NMR (100 MHz, CDCl₃) δ 151.0, 150.9, 144.4 (d, $J_{C-P} = 3.8$ Hz, 2C), 143.7 (d, $J_{C-P} = 2.9$ Hz, 2C), 140.0, 139.2, 133.0, 132.7, 131.8, 131.8 $(q, J_{C-F} = 33.3 \text{ Hz}, 2C), 131.6 (q, J_{C-F} = 32.4 \text{ Hz}, 2C), 131.2, 131.2, 130.9, 130.1 (2C), 130.1 (2C$ 129.5 (2C), 128.8, 128.7, 127.5, 127.4, 126.9, 126.8, 126.4, 126.2, 124.4, 124.2, 123.3 (q, $J_{C-F} =$ 271 Hz, 2C), 123.2 (q, $J_{C-F} = 272$ Hz, 2C), 121.6, 121.1, 118.5 (d, $J_{C-P} = 9.5$ Hz, 2C),; ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta - 62.6, -62.7; {}^{31}\text{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_3) \delta - 144.4; \text{HRMS} (\text{ESI+}) \text{ calcd for } 62.6, -62.7; {}^{31}\text{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_3) \delta - 144.4; \text{HRMS} (\text{ESI+}) \text{ calcd for } 62.6, -62.7; {}^{31}\text{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_3) \delta - 144.4; \text{HRMS} (\text{ESI+}) \text{ calcd for } 62.6, -62.7; {}^{31}\text{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_3) \delta - 144.4; \text{HRMS} (\text{ESI+}) \text{ calcd for } 62.6, -62.7; {}^{31}\text{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_3) \delta - 144.4; \text{HRMS} (\text{ESI+}) \text{ calcd for } 62.6, -62.7; {}^{31}\text{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_3) \delta - 144.4; \text{HRMS} (\text{ESI+}) \text{ calcd for } 62.6, -62.6, -62.7; {}^{31}\text{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_3) \delta - 144.4; \text{HRMS} (\text{ESI+}) \text{ calcd for } 62.6, -62.6, -62.6;$ $C_{42}H_{21}F_{12}NaO_{3}P^{+}$ [M+Na]⁺ 855.0929, found 855.0928.

Synthesis of 9

1-(4-(((11bR)-2,6-Bis(3,5-bis(trifluoro-methyl)phenyl)-4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2]di oxaphosphepin-4-yl)oxy)phenyl)-3-(3,5-bis(trifluoromethyl)phenyl)urea (9): To a solution of 8a (42 mg, 0.038 mmol) in CH₂Cl₂ (2 mL) was added 5.5 M solution of TBHP in nonane (13 µL, 0.072 mmol, 1.9 equiv) at 0 °C. After stirring for 3 h at ambient temperature, the reaction was quenched with saturated aqueous Na₂S₂O₃. The mixture was extracted with EtOAc, and the combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was reprecipitated from EtOAc-hexane to give 9 as a colorless solid (37 mg, 88% yield). [α]²³_D -105.8 (c 1.00, THF); IR (KBr) 1560, 1508, 1474, 1381, 1324, 1281, 1178, 1136 cm⁻¹; ¹H NMR (400 MHz, THF-*d*₈) δ 8.51 (s, 1H), 8.42 (s, 1H), 8.40 (s, 1H), 8.35 (s, 2H), 8.18 (t, J = 7.3 Hz, 2H), 8.08 (s, 4H), 8.05 (s, 1H). 7.67–7.58 (m, 2H), 7.57 (s, 1H), 7.48–7.36 (m, 4H), 7.21 (d, J = 8.7 Hz, 2H), 6.54 (d, J = 8.7 Hz, 2H); δ^{13} C NMR (100 MHz, THF- d_8) δ 152.8, 146.0 (d, $J_{C-P} = 5.7$ Hz, 2C), 145.4, 145.3, 144.1 (d, $J_{C-P} = 8.6$ Hz, 2C), 143.0, 140.1, 140.0, 137.6, 133.8, 133.5, 133.4, 132.9, 132.6 (q, J_{C-F} = 32.4 Hz, 2C), 132.4 (q, J_{C-F} = 32.4 Hz, 2C), 132.3 (q, J_{C-F} = 32.4 Hz, 2C), 131.9 (2C), 131.7, 131.4 (3C), 129.9, 129.9, 128.7, 127.8, 127.7 (3C), 124.6 (q, $J_{C-F} = 271 \text{ Hz}, 2C$), 124.6 (q, $J_{C-F} = 271 \text{ Hz}, 2C$), 124.5 (q, $J_{C-F} = 271 \text{ Hz}, 2C$), 123.6, 122.6, 122.5, 120.4 (2C), 119.5 (d, $J_{C-P} = 5.7$ Hz, 2C), 118.8 (2C), 115.5; ¹⁹F NMR (376 MHz, THF- d_8) δ –63.2, -63.7, -63.8; ³¹P NMR (162 MHz, THF-d₈) δ-4.6; HRMS (ESI+) calcd for C₅₁H₂₅F₁₈N₂NaO₅P⁺ $[M+Na]^+$ 1141.1106, found 1141.1107.

CF₃ 1-(3,5-Bis(trifluoromethyl)phenyl)-3-phenylurea (10)⁴

Preparation of Substrate 5a-5f, 14, and 15

2-Geranylphenol (**5a**),^{3,5,6} 2-geranyl-4-bromophenol (**5c**),⁷ 2-geranyl-4-methoxyphenol (**5d**),³ 2-geranyl-4-methylphenol (**5e**),³ geranylbenzene (**17**),⁸ were synthesized as reported procedure.

Synthesis of 5b and 5f

2-Beranyl-4-trifloromethylphenol (5b): То а solution of 4-trifluoromethylphenol (535 mg, 3.3 mmol, 1.1 equiv) in toluene (15 mL) was added NaH (60% in oil, 132 mg, 3.3 mmol, 1.1 equiv) at 0 °C. After stirring for 2 h at ambient temperature, geranylchloride (556 µL, 3.0 mmol) was added and stirred for 15 h. After the stirring, the reaction was quenched with saturated aqueous NH₄Cl. The mixture was extracted with EtOAc, and the combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in The residue was purified by column chromatography on silica gel (hexane–EtOAc = 50:1vacuo. \rightarrow 20:1) to give **5b** (358 mg, 40% yield). Clear oil; IR (neat) 1616, 1507, 1438, 1329, 1276, 1216, 1160, 1119, 1075 cm⁻¹; δ 7.40–7.32 (m, 2H), 6.88–6.81 (m, 1H), 5.59 (brs, 1H), 5.31 (t, J = 7.1 Hz, 1H), 5.12-5.02 (m, 1H), 3.40 (d, J = 7.3 Hz, 2H), 2.18-2.06 (m, 4H), 1.77 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 139.8, 132.2, 127.3, 127.1 (q, $J_{C-F} = 3.8$ Hz), 124.9 (q, $J_{C-F} = 3.8$ Hz), 124.5 (q, $J_{C-F} = 269$ Hz), 123.6, 122.9 (q, $J_{C-F} = 32.4$ Hz), 120.5, 115.8, 39.6, 29.7, 26.3, 25.6, 17.7, 16.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.2; HRMS (FAB) calcd for C₁₇H₂₂F₃O [M+H]⁺ 299.1617, found 299.1620

2-Geranyl-4-phenylphenol (5f): Compound **5f** was prepared from geranyl chloride and 3-phenylphenol according to the same manner as **5b**. **5f** (191 mg, 21% yield).; Clear oil; IR (neat) 3451, 2967, 2915, 2853, 1486, 1450, 1411, 1227, 759, 697 cm⁻¹; δ 7.56 (d, *J* = 7.4 Hz, 2H), 7.41 (dd, *J* = 7.8, 7.4 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.10 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.05 (d, *J* = 1.4 Hz, 1H), 5.36 (t, *J* = 7.3 Hz, 1H), 5.22 (s, 1H), 5.08 (t, *J* = 6.0 Hz,

1H), 3.40 (d, J = 7.3 Hz, 2H), 2.18–2.06 (m, 4H), 1.79 (s, 3H), 1.69 (s, 3H), 1.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 140.8, 140.7, 138.8, 132.0, 130.3, 128.7 (2C), 127.2, 126.9 (2C), 125.8, 123.8, 121.5, 119.5, 114.5, 39.7, 29.5, 26.4, 25.7, 17.7, 16.2; HRMS (ESI+) calcd for C₂₂H_{26Na}O [M+Na]⁺ 329.1876, found 329.1878.

Synthesis of 19

SiMe₃

(*E*)-(2-(3,7-Dimethylocta-2,6-dien-1-yl)phenoxy)trimethylsilane (19): To a solution of **5a** (115 mg, 0.5 mmol) and triethylamine (139 μ L, 1.0 mmol) in THF (5 mL) was added trimethylsilyl chloride (126 μ L, 1.0 mmol) at 0 °C. After stirring for 2 h at ambient temperature, the mixture was filtered through a Celite pad, washed with Et₂O, and the filtrate was concentrated to give **18** (79 mg, 85% yield) as a pale yellow oil. IR (neat) 1490, 1451, 1253 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 7.3 Hz, 1H), 7.06 (t, *J* = 7.8 Hz, 1H), 6.89 (t, *J* = 7.3 Hz, 1H), 6.77 (d, *J* = 7.8 Hz, 1H), 5.29 (t, *J* = 7.3 Hz, 1H), 5.11 (t, *J* = 6.0 Hz, 1H), 3.29 (d, *J* = 7.3 Hz, 2H), 2.25–2.01 (m, 4H), 1.69 (s, 6H), 1.60 (s, 3H), 0.28 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 136.0, 132.3, 131.4, 129.4, 126.6, 124.3, 122.3, 121.3, 118.7, 39.7, 28.4, 26.6, 25.7, 17.7, 16.1 0.5 (3C); HRMS (FAB+) calcd for C₁₉H₃₀OSi⁺ [M]⁺ 302.2066, found 302.2069.

Typical Procedure for the Enantioselective Bromocyclization Induced by Phosphite–Urea Bifunctional Catalysts

To a solution of **5c** (13.3 mg, 0.01 mmol, 10 mol %) in toluene (5.0 mL) were added **5a** (23.0 mg, 0.10 mmol) and NBP (24.9 mg, 0.11 mmol, 1.1 equiv) successively at -78 °C, and the mixture was stirred at -78 °C for 0.5 h and then at -40 °C for 6 h. The reaction mixture was quenched with saturated aqueous Na₂S₂O₃ (3.0 mL) and extracted with hexane (5.0 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The yield of *trans*-fused brominated AB-ring product **6a** (29%) and *endo*- and *exo*-isomeric A-ring products **7a** (60%) were determined by ¹H NMR analysis of the crude mixture using tetrachloroethane (5.2 µL, 0.050 mmol, 0.5 equiv) as an internal standard. [Note: The following assignments of **6a**, **7a**, **S4a**, and **S5a** were used by ¹H NMR analysis. δ 4.05 (dd, J = 12.4, 4.1 Hz, 1H of *trans*-**6**a), δ 4.15 (dd, J = 11.0, 1.4 Hz, 1H of **S5a**), δ 4.21 (dd, J = 11.0, 4.1 Hz, 1H of **exo**-**7a**), δ 4.27 (dd, J = 9.6, 6.4 Hz, 1H of *endo*-**7a**), δ 4.35 (dd, J = 9.6, 6.0 Hz, 1H of **S4a**).] The crude product was purified by column chromatography on silica gel (hexane–EtOAc = 1000:1 \rightarrow 500:1 \rightarrow 20:1) to give **6a** and *endo*- and *exo*-isomeric mixture**7a**.

The *endo-* and *exo-*isomeric mixture **7a** was used for the next cyclization to determine the enantioselectivity. To a solution of the resulting mixture, which were obtained in the above reaction, in *i*-PrNO₂ (0.6 mL) was added TfOH (21 mL, 0.24 mmol, 4.0 equiv) at -78 °C. After stirring at -78 °C for 24 h, the reaction mixture was quenched with saturated aqueous NaHCO₃, and extracted with Et₂O (5 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The diastereomeric ratio (*trans/cis* = 75:25) was determined by ¹H NMR analysis of the crude mixture. [Note: The following assignments were used by ¹H NMR analysis. δ 0.79 (s, 3H of *cis*-6a), δ 1.03 (s, 3H of *trans*-6a).] The residue was purified by preparative TLC (hexane–EtOAc = 20:1) to give 6a.

The corresponding physical and spectroscopic data for 7a, S4a, S5a, and 7a are as follows.

2-((5-Bromo-2,6,6-trimethylcyclohex-2-en-1-yl)methyl)phenol (*endo*-7a) and 2-((3-Bromo-2,2-dimethyl-6-methylenecyclohexyl)methyl)phenol (*exo*-7a): Compounds *endo*-7a and *exo*-7a could not be separated by column chromatography on silica gel. *endo*-7a: ¹H NMR (400 MHz, CDCl₃) δ 5.22 (brs, 1H), 4.27 (dd, J = 9.6, 6.4 Hz, 1H), 1.48 (s, 3H), 1.21 (s, 3H), 1.05 (s, 3H); Other resonances could not be discerned for this compound. *exo*-7a: ¹H NMR (400 MHz, CDCl₃) δ 4.86 (s, 1H),4.74 (s, 1H), 4.21 (dd, J = 11.0, 4.1 Hz, 1H), 1.12 (s, 3H), 1.01 (s, 3H); Other resonances could not be discerned for this compound.

3-Bromo-2-methyl-2-(4-methylpent-3-en-1-yl)chroman (S4a):⁵ Colorless oil; IR (neat) 1585, 1489, 1456, 1262, 1238 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.13 (dd, J = 7.3, 7.3 Hz, 1H), 7.01 (d, J = 7.3 Hz, 1H), 6.86 (dd, J = 7.8, 7.3 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 5.13 (t, J = 7.4 Hz, 1H), 4.35 (dd, J = 9.6, 6.0 Hz, 1H), 3.36 (dd, J = 16.5, 6.0 Hz, 1H), 3.27 (dd, J = 16.5, 9.6 Hz, 1H), 2.24–2.25 (m, 2H), 1.91–1.75 (m, 2H), 1.69 (s, 3H), 1.63 (s, 3H), 1.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 132.2, 128.7, 128.0, 123.6, 120.5, 119.9, 117.4, 78.3, 50.6, 39.1, 34.0, 25.7, 21.4, 19.8, 17.6; HRMS (FAB+) calcd for C₁₆H₂₁BrO⁺ [M]⁺ 308.0776, found 308.0769.

 $(E)-2-(6,7-Dibromo-3,7-dimethyloct-2-en-1-yl)phenol (S5a):^{5} Colorless oil; IR (neat) 1591, 1489, 1454, 1370, 1221, 1097 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 7.14 (d,$ *J*= 7.4 Hz, 1H), 7.11 (dd,*J*= 7.8, 7.4 Hz, 1H), 6.87 (dd,*J*= 7.4, 7.4 Hz, 1H), 6.79 (d,*J*= 7.8 Hz, 1H), 5.45 (t,*J*= 7.4 Hz, 1H), 4.97 (s, 1H), 4.15 (dd,*J*= 11.0, 1.4 Hz, 1H), 3.39 (d,*J*= 7.4 Hz, 2H), 2.58 (dddd,*J*= 14.7, 7.8, 7.8, 1.4 Hz, 1H), 2.46–2.38 (m, 1H), 2.29–2.19 (m, 1H), 1.97 (s, 3H), 1.95–1.83 (m, 1H), 1.81 (s, 1H), 1.80 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) & 154.0, 135.9, 129.9, 127.5, 126.8, 123.5, 120.8, 115.6, 68.8, 65.7, 37.8, 35.4, 33.7, 29.3, 28.1, 16.1; HRMS (FAB+) calcd for C₁₆H₂₂Br₂O⁺ [M]⁺ 388.0037, found 388.0043.

(2R,4aR,9aR)-2-Bromo-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene

(*trans-6a*): The absolute configuration of *trans-6a* was determined by coupling constant of ¹H NMR and transformation to *trans-11a* and assigned to be (4aR,9aR) by comparing the reported retention time of HPLC.;³ Colorless solid; $[\alpha]^{23}{}_{D} 28.0$ (*c* 0.32, CHCl₃) for 65% ee (*trans/cis* 75:25); HPLC (Daicel Chiralcel AD-H column, hexane–*i*-PrOH = 1000:1, flow rate = 1.0 mL/min) $t_{\rm R} = 10.6$ (minor enantiomer), 13.6 (major enantiomer) min; IR (KBr) 1488, 1454, 1242, 1150 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.13–7.03 (m, 2H), 6.84 (t, *J* = 7.3 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 4.05 (dd, *J* = 12.4, 4.1 Hz, 1H, <u>C(2)H_{axial}</u>), 2.83–2.69 (m, 2H), 2.28 (dddd, *J* = 13.7, 4.1, 3.6, 3.6 Hz, 1H), 2.13 (dddd, *J* = 13.7, 13.7, 12.4, 3.7 Hz, 1H), 2.01 (ddd, *J* = 12.8, 3.7, 3.6 Hz, 1H), 1.81 (dd, *J* = 11.9, 6.0 Hz, 1H), 1.78 (ddd, *J* = 13.7, 12.8, 3.6 Hz, 1H), 1.24 (s, 3H), 1.17 (s, 3H), 1.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 129.5, 127.3, 121.7, 120.0, 117.0, 75.7, 66.0, 48.0, 40.7, 39.2, 31.5, 29.6, 24.6, 19.8, 16.9; HRMS (FAB) calcd for C₁₆H₂₁BrO⁺ [M]⁺ 308.0776, found 308.0774.

(2R,4aS,9aR)-2-Bromo-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene

(*cis*-6a): Colorless solid; IR (neat) 1584, 1489, 1455, 1237 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.11–7.02 (m, 2H), 6.84 (t, J = 7.3 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 4.09 (dd, J = 12.8, 3.3 Hz, 1H, C(2)H_{axial}), 3.12 (dd, J = 17.9, 7.8 Hz, 1H), 2.84 (d, J = 17.9 Hz, 1H), 2.48 (dddd, J = 13.7, 12.8, 12.8, 3.6 Hz, 1H), 2.11–2.04 (m, 2H), 1.67 (ddd, J = 14.7, 13.7, 4.1 Hz, 1H) 1.57 (d, J = 7.8 Hz, 1H), 1.19 (s, 3H), 1.15 (s, 3H), 0.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 128.7, 127.0, 121.4, 120.3, 117.2, 74.4, 67.5, 45.1, 40.3, 40.2, 30.1, 29.9, 26.5, 27.8, 16.6; HRMS (FAB) calcd for C₁₆H₂₁BrO⁺ [M]⁺ 308.0776, found 308.0794.

(2*R*,4a*R*,9a*R*)-2-Bromo-1,1,4a-trimethyl-7-(trifluoromethyl)-2,3,4,4a,9,9a-hexahydro-1*H*-xant hene (6b): Colorless solid; $[\alpha]^{27}_{D}$ 54.7 (*c* 1.00, CHCl₃) for 66% ee (*trans/cis* 74:26); HPLC (Daicel Chiralcel AD-3 column × 2, hexane–*i*-PrOH = 1000:1, flow rate = 0.7 mL/min) t_R = 22.4 (major enantiomer), 26.1 (major enantiomer) min; IR (KBr) 1621, 1505, 1332, 1281, 1150, 1120, 1069 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (s, 1H), 7.33 (dd, *J* = 2.3, 8.7 Hz, 1H), 6.81 (d, *J* = 8.7 Hz, 1H), 4.04 (dd, *J* = 12.8, 4.1 Hz, 1H, C(2)H_{axial}), 2.88–2.72 (m, 2H), 2.30 (dddd, *J* = 14.0, 4.4, 3.6, 3.2 Hz, 1H), 2.13 (dddd, *J* = 14.0, 12.8, 12.8, 3.6 Hz, 1H), 2.03 (ddd, *J* = 13.2, 3.6, 3.6 Hz, 1H), 1.80 (dd, J = 10.0, 5.2 Hz, 1H), 1.79 (ddd, J = 13.2, 12.8, 3.2 Hz, 1H),1.25 (s, 3H), 1.18 (s, 3H), 1.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 126.9 (q, $J_{C-F} = 3.8$ Hz), 124.6 (q, $J_{C-F} = 3.8$ Hz), 124.5 (q, $J_{C-F} = 270$ Hz), 122.2 (q, $J_{C-F} = 32.4$ Hz), 121.9, 77.2, 65.3, 47.7, 40.5, 39.2, 31.4, 29.6, 24.5, 19.9, 16.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2; HRMS (FAB+) calcd for C₁₇H₂₁BrF₃O⁺ [M+H]⁺, 377.0722 found 377.0741.

[Note: The following assignments of **7b**, **S4b**, **S5b**, and **6b** were used by ¹H NMR analysis. δ 4.04 (dd, J = 12.8, 4.1 Hz, 1H, **C**(2)H_{axial} of *trans*-6b), δ 4.14 (dd, J = 11.6, 1.2 Hz, 1H of **S5b**), δ 4.24 (dd, J = 10.6, 4.4 Hz, 1H of *exo*-7b), δ 4.28 (dd, J = 9.0, 6.4 Hz, 1H of *endo*-7b), δ 4.33 (dd, J = 8.8, 2.4 Hz, 1H of **S4b**).

(2R,4aR,9aR)-2,7-Dibromo-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene

(6c): Colorless solid; $[\alpha]^{27}{}_{D}$ 54.8 (*c* 1.10, CHCl₃) for 71% ee (*trans/cis* 75:25); HPLC (Daicel Chiralcel AD-3 column × 2, hexane–*i*-PrOH = 1000:1, flow rate = 0.8 mL/min) t_{R} = 22.5 (major enantiomer), 30.7 (minor enantiomer) min; IR (KBr) 1480, 1258, 1240, 1147, 1130, 1070 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 1H), 7.17 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.63 (d, *J* = 8.7 Hz, 1H), 4.03 (dd, *J* = 12.4, 4.1 Hz, 1H, C(2)H_{axial}), 2.80–2.66 (m, 2H), 2.28 (dddd, *J* = 13.8, 4.1, 4.1, 3.7 Hz, 1H), 2.12 (dddd, *J* = 13.8, 13.3, 12.4, 3.7 Hz, 1 H), 1.99 (ddd, *J* = 13.3, 3.7, 3.7 Hz, 1H), 1.76 (dd, *J* = 12.4, 6.4 Hz, 1H), 1.75 (ddd, *J* = 13.3, 13.3, 4.1 Hz, 1H), 1.22 (s, 3H), 1.16 (s, 3H), 1.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 132.0, 130.3, 123.9, 118.8, 112.0, 76.1, 65.5, 47.7, 40.5, 39.2, 31.4, 29.6, 24.4, 19.8, 16.9; HRMS (FAB+) calcd for C₁₆H₂₀Br₂O⁺ [M]⁺ 385.9811, found 385.9866.

[Note: The following assignments of **7c**, **S4c**, **S5c**, and **6c** were used by ¹H NMR analysis. δ 4.03 (dd, J = 12.4, 4.1 Hz, 1H, **C**(2)H_{axial} of *trans*-6c), δ 4.14 (dd, J = 11.4, 1.6 Hz, 1H of **S5c**), δ 4.22 (dd, J = 10.4, 4.4 Hz, 1H of *exo*-7c), δ 4.26 (dd, J = 9.4, 6.4 Hz, 1H of *endo*-7c, δ 4.31 (dd, J = 10.8, 2.0 Hz, 1H of **S4c**).)

(2R,4aR,9aR)-2-Bromo-7-methoxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene

(6d): Pale yellow solid; $[\alpha]^{27}_{D}$ 44.0 (*c* 0.85, CHCl₃) for 67% ee (*trans/cis* 73:27); HPLC (Daicel Chiralcel AD-3 column × 2, hexane–*i*-PrOH = 1000:1, flow rate = 0.8 mL/min) t_{R} = 19.5 (major

enantiomer), 21.7 (minor enantiomer) min; IR (KBr) 1496, 1260, 1225, 1148, 1123, 1039, cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.69–6.66 (m, 2H), 6.63–6.60 (m, 1H), 4.05 (dd, J = 12.8, 4.1 Hz, 1H, C(2)H_{axial}), 3.75 (s, 3H), 2.81–2.67 (m, 2H), 2.28 (dddd, J = 13.8, 4.1, 3.7, 3.7 Hz, 1H), 2.13 (dddd, J = 13.8, 13.8, 12.8, 3.7 Hz, 1H), 1.98 (ddd, J = 13.3, 3.7, 3.7 Hz, 1H), 1.80 (dd, J = 11.5, 6.4 Hz, 1H), 1.76 (ddd, J = 13.8, 13.3, 3.7 Hz, 1H), 1.21 (s, 3H), 1.17 (s, 3H), 1.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 146.6, 122.3, 117.5, 114.0, 113.4, 75.4, 66.1, 55.7, 48.1, 40.7, 39.2, 31.5, 29.6, 24.9, 19.7, 16.8; HRMS (FAB+) calcd for C₁₇H₂₃BrO₂⁺ [M]⁺ 338.0881, found 338.0892.

[Note: The following assignments of **7d**, **S4d**, **S5d**, and **6d** were used by ¹H NMR analysis. δ 4.05 (dd, J = 12.8, 4.1 Hz, 1H, **C**(2)H_{axial} of *trans*-6d), δ 4.13 (dd, J = 14.4, 7.2 Hz, 1H of **S5d**), δ 4.21 (dd, J = 11.0, 4.1 Hz, 1H of *exo*-7d), δ 4.26 (dd, J = 9.6, 6.0 Hz, 1H of *endo*-7d), δ 4.34 (dd, J = 9.2, 6.0 Hz, 1H of **S4d**).]

(2*R*,4*aR*,9*aR*)-2-Bromo-1,1,4*a*,7-tetramethyl-2,3,4,4*a*,9,9*a*-hexahydro-1*H*-xanthene (6e): Pale yellow solid; $[\alpha]^{27}_{D}$ 45.0 (*c* 0.95, CHCl₃) for 67% ee (*trans/cis* 73:27); HPLC (Daicel Chiralpack IB-3 column, hexane–*i*-PrOH = 1000:1, flow rate = 0.8 mL/min) *t*_R = 13.7 (minor enantiomer), 15.9 (major enantiomer) min; IR (KBr) 1489, 1378, 1241, 1151 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.89 (d, *J* = 7.8 Hz, 1H), 6.88 (s, 1H), 6.65 (d, *J* = 7.8 Hz, 1H), 4.05 (dd, *J* = 12.4, 3.7 Hz, 1H, C(2)H_{axial}), 2.83–2.64 (m, 2H), 2.27 (dddd, *J* = 13.8, 4.1, 3.7, 3.7 Hz, 1H), 2.25 (s, 3H), 2.11 (dddd, *J* = 13.8, 13.8, 12.4, 3.7 Hz, 1H), 1.99 (ddd, *J* = 13.3, 3.7, 3.7 Hz, 1H), 1.79 (dd, *J* = 11.5, 6.0 Hz, 1H), 1.77 (ddd, *J* = 13.8, 13.3, 4.1 Hz, 1H), 1.22 (s, 3H), 1.16 (s, 3H), 1.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 129.9, 129.2, 128.0, 121.3, 116.7, 75.6, 66.1, 48.2, 40.7, 39.2, 31.5, 29.6, 24.5, 20.5, 19.7, 16.9; HRMS (FAB+) calcd for C₁₇H₂₃BrO⁺ [M]⁺ 322.0932, found 322.0937. [Note: The following assignments of **7e**, **S4e**, **S5e**, and **6e** were used by ¹H NMR analysis. δ 4.05 (dd, *J* = 12.4, 3.7 Hz, 1H) C(2)H are 10, δ 4.13 (dd, *J* = 14.4, 7.2 Hz, 1H of **S5e**), δ 4.23

 $(dd, J = 12.4, 3.7 \text{ Hz}, 1\text{H}, C(2)\text{H}_{axial} \text{ of } trans-6e), \delta 4.13 (dd, J = 14.4, 7.2 \text{ Hz}, 1\text{H of } S5e), \delta 4.23 (dd, J = 11.4, 4.0 \text{ Hz}, 1\text{H of } exo-7e), \delta 4.28 (dd, J = 9.8, 6.4 \text{ Hz}, 1\text{H of } endo-7e), \delta 4.33 (dd, J = 8.4, 2.8 \text{ Hz}, 1\text{H of } S4e).]$

Br^v, H

(2R,4aR,9aR)-2-Bromo-1,1,4a-trimethyl-6-phenyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene

(6f): Colorless solid; $[\alpha]^{27}_{D}$ 48.9 (*c* 0.95, CHCl₃) for 65% ee (*trans/cis* 76:24); HPLC (Daicel Chiralcel AD-3 column, hexane–*i*-PrOH = 1000:1, flow rate = 1.0 mL/min) $t_{\rm R}$ = 26.6 (major enantiomer), 40.0 (minor enantiomer) min; IR (KBr) 1483, 1305, 1149, 910 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.8, 1.4 Hz, 2H), 7.41 (dd, J = 7.8, 7.8 Hz, 2H), 7.31 (t, J = 7.8 Hz, 1H), 7.10 (dd, J = 7.8, 1.8 Hz, 1H), 7.02 (d, J = 1.8 Hz, 1H), 4.07 (dd, J = 12.6, 4.2 Hz, 1H, C(2)H_{axial}), 2.88–2.73 (m, 2H), 2.30 (dddd, J = 13.7, 4.2, 4.1, 3.6 Hz, 1H), 2.16 (dddd, J = 12.7, 12.6, 12.8, 3.7 Hz, 1H), 1.28 (s, 3H), 1.19 (s, 3H), 1.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 140.7, 140.6, 129.9, 128.6 (2C), 127.1, 126.9 (2C), 120.8, 118.9, 115.5, 76.0, 65.9, 48.1, 40.7, 39.2, 31.5, 29.6, 24.6, 19.9, 16.9; HRMS (ESI+) calcd for C₂₂H₂₅BrNaO⁺ [M+Na]⁺ 407.0981, found 407.0981.

[Note: The following assignments were used by ¹H NMR analysis. δ 4.07 (dd, J = 12.6, 4.2 Hz, 1H, **C(2)**H_{axial} of *trans*-6f), δ 4.16 (dd, J = 12.0, 2.0 Hz, 1H of **S5f**), δ 4.24 (dd, J = 10.6, 4.4 Hz, 1H of *exo*-7f), δ 4.28 (dd, J = 9.8, 6.4 Hz, 1H of *endo*-7f), δ 4.34 (dd, J = 9.8, 2.8 Hz, 1H of **S4f**).]

Determination of Absolute Configuration

(4a*R*,9a*R*)-1,1,4a-Trimethyl-2,3,4,4a,9,9a-hexahydro-1*H*-xanthene (*trans*-10a) and (4a*S*,9a*R*)-1,1,4a-Trimethyl-2,3,4,4a,9,9a-hexahydro-1*H*-xanthene (*cis*-10a): To a solution of the mixture of *endo*- and *exo*-isomeric A-ring products 7a (33.9 mg, 0.11 mmol) in *i*-PrNO₂ (1.1 mL) was added TfOH (21 μ L, 0.24 mmol, 4.0 equiv) at -78 °C. After stirring at -78 °C for 24 h, the reaction mixture was quenched with saturated aqueous NaHCO₃, and extracted with Et₂O (5 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The diastereomeric ratio (*trans/cis* = 75:25) was determined by ¹H NMR analysis of the crude mixture. The residue was purified by preparative TLC (hexane–EtOAc = 20:1) to give 6a (31.9 mg, 94% yield) as a mixture of *cis*-, and *trans*-isomer. The diastereomeric ratio (*trans/cis* = 77:23) was determined by ¹H NMR analysis.

To a solution of **6a** (31.9 mg, 0.10 mmol) in toluene (5 mL) were added AIBN (3.2 mg, 0.02 mmol, 20 mol %) and 1.0 M cyclohexane solution of tributyltin hydride (500 μ L, 0.5 mmol, 5.0 equiv) at ambient temperature. The mixture was stirred for 1 h under reflux condition. After the stirring, the reaction mixture was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane only) to give **11a** (17.8 mg, 77% yield) as a mixture of *cis*-, and *trans*-isomer. Compounds *trans*-**11a** and *cis*-**11a** could not be separated by column chromatography on silica gel. The absolute configuration of *trans*-**11a** was determined assigned to be (4a*R*,9a*R*) by comparing the reported retention time of HPLC.³; Spectral data of ¹H NMR and ¹³C NMR of the mixture of *cis*-, and *trans*-isomer were identical to previously reported data.³; HPLC (Daicel Chiralcel OD3 column × 2, hexane, flow rate = 0.3 mL/min) *t*_R = 28.0 (minor enantiomer of *cis*-**11a**) min, 37.6 (major enantiomer of *cis*-**11a**) min, 43.0 (major enantiomer of *trans*-**11a**) min.

Procedure for Control Experiment with 17 or 19

Control Experiment with 17

To a solution of **8a** (11 mg, 0.01 mmol, 10 mol %) in toluene (1.0 mL) were added **17** (21.4 mg, 0.10 mmol) and NBP (24.9 mg, 0.11 mmol, 1.1 equiv) and successively at -78 °C, and the mixture was stirred at -78 °C for 0.5 h and then at -40 °C for 6 h. The reaction mixture was quenched with saturated aqueous Na₂S₂O₃ (3.0 mL) and extracted with hexane (5.0 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel using (hexane–EtOAc 1000:1) as an eluent. The yield of *endo*-**18** and *exo*-**18** (87%) was determined by ¹H NMR analysis of the crude mixture using tetrachloroethane (5.2 µL, 0.050 mmol, 0.5 equiv) as an internal standard. The ee of *endo*-**18** and *exo*-**18** mixture was determined by HPLC analysis (Daicel Chiralpack IB-3 column, hexane, flow rate = 1.0 mL/min) *t*_R= 7.1, 10.8 min.

The corresponding physical and spectroscopic data for *endo-18* and *exo-18* are as follows.

5-Bromo-2,6,6-trimethylcyclohex-2-en-1-yl)methyl)benzene

(*endo*-18): IR (neat) 1649, 1604, 1496, 1453, 1389, 1369, 1225, 1206, 1146 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.13 (m, 5H), 5.20 (brs, 1H), 4.27 (dd, J = 9.6, 6.4 Hz, 1H), 3.09 (d, J = 14.7 Hz, 1H), 2.62–2.46 (m, 4H), 1.45 (s, 3H), 1.25 (s, 3H), 1.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 141.6, 128.5 (2C), 128.2 (2C), 125.6, 110.7, 67.1, 53.4, 42.0, 37.1, 35.8, 32.8, 28.7, 16.9; HRMS (FAB+) calcd for C₁₆H₂₁Br⁺ [M]⁺292.0827, found 292.0826.

3-Bromo-2,2-dimethyl-6-methylenecyclohexyl)methyl)benzene

(*exo-18*): IR (neat) 1603, 1496, 1453, 1388, 1368 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.22 (m, 2H), 7.19–7.12 (m, 3H), 4.87 (s, 1H) 4.67 (s, 1H), 4,22 (dd, J = 11.4, 4.6 Hz, 1H), 3.04 (dd, J = 15.2, 2.3 Hz, 1H), 2.85 (dd, J = 15.2, 10.6 Hz, 1H), 2.36–2.25 (m, 3H), 2.16–2.02 (m, 2H), 1.28 (s, 3H), 0.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 137.0, 128.4 (2C), 128.3 (2C), 125.7, 120.6, 64.9, 51.2, 38.9, 35.7, 35.3, 28.7, 23.2, 16.0; HRMS (FAB+) calcd for C₁₆H₂₁Br⁺ [M]⁺ 292.0827, found 292.0842.

Control Experiment with 19

To a solution of **8a** (11 mg, 0.01 mmol) in toluene (1.0 mL) were added NBP (24.9 mg, 0.11 mmol) and **19** (30.3 mg, 0.10 mmol) successively at -78 °C, and the mixture was stirred at -78 °C for 0.5 h and then at -40 °C for 6 h. The reaction mixture was quenched with saturated aqueous Na₂S₂O₃ (3.0 mL) and extracted with hexane (5.0 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The yield (64%) was determined by ¹H NMR analysis of the crude mixture using tetrachloroethane (5.2 µL, 0.050 mmol, 0.5 equiv) as an internal standard. The crude product was purified by column chromatography on silica gel using (hexane–EtOAc 20:1) as an eluent to give the mixture of *endo-* and *exo-*isomeric A-ring products **S6**.

The resulting mixture of *endo-* and *exo-*isomeric A-ring products **S6** was used for the next cyclization to determine the enantioselectivity. To a solution of the resulting mixture, which were obtained in the above reaction, in *i*-PrNO₂ (1.0 mL) was added TfOH (35 μ L, 0.4 mmol) at -78 °C. After stirring at -78 °C for 24 h, the reaction mixture was quenched with saturated aqueous NaHCO₃, and extracted with Et₂O (5 mL × 3). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The diastereomeric ratio (*trans/cis* = 75 : 25) was determined by ¹H NMR analysis of the crude mixture. The crude mixture was purified by preparative TLC using (hexane–EtOAc = 20:1) as an eluent to give **6a** as a mixture of *cis-*, and *trans-*isomer. The ee of mixture of *cis-*, and *trans-*isomer **6a** was determined by HPLC analysis.

Author Information

Corresponding Authors

*E-mail: ishihara@cc.nagoya-u.ac.jp

*E-mail: sakakura@okayama-u.ac.jp

Present Address

[§](H.N.) Graduate School of Science and Technology, Kwansei Gakuin University.

References

- Recent report of synthetic method of S1a; (a) K. Aikawa, T. Okamoto, K. Mikami, J. Am. Chem. Soc., 2012, 134, 10329; (b) M. Rueping, B. J. Nachtsheim, R. M. Koenigs, W. Ieawsuwan, Chem. Eur. J., 2010, 16, 13116.
- 2. J. Lee, B. List, J. Am. Chem. Soc., 2012, 134, 18245.
- 3. A. Sakakura, M. Sakuma, K. Ishihara, Org. Lett., 2011, 13, 3130.
- 4. G. Jakob, C. Tancon, Z. Zhang, K. M. Lippert, P. R. Schreiner, Org. Lett., 2012, 14, 1724.
- 5. Y. Sawamura, H. Nakatsuji, A. Sakakura, K. Ishihara, Chem. Sci., 2013, 4, 4181.
- (a) S. Tanaka, F. Ono, T. Katagiri, J. Tanaka, Bull. Chem. Soc. Jpn., 1977, 50, 750. (b) F. Bigi, G. Casiragi, G. Casnati, G. Sartori, Synthesis, 1981, 310.
- 7. K. Kumazawa, K. Ishihara, H. Yamamoto, Org. Lett., 2004, 6, 2551.
- 8. M. F. Mechelke, D. F. Wiemer, J. Org. Chem., 1999, 64, 4821.

S25

		I		1
		ЛЛ		
220.0 210.0 200.0 190.0 180.0 170.0 160.0	150.0 140.0 130.0 120.0 110.0 100.0 90.0	80.0 70.0 60.0 50.0 40	.0 30.0 20.0 10.0	0 -10.0 -20.0
	2.77 2.252 2.252 2.211 2.20110	7.824 7.605 7.166 6.947	5.700 5.300 5.300 4.900	
X : parts per Million : 13C		<u>قەنەنە</u>	N N N N N N	

