Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2016

I. Experimental Section

General:

Solvents were dried by reflux under N2 over sodium or CaH2 and freshly distilled prior to use. Air-sensitive compounds were handled under a N2 atmosphere using standard Schlenk and glovebox techniques. NMR spectra were recorded on Bruker SPECT NMR (400 MHz for ¹H, 376 MHz for ¹⁹F, 100 MHz for ¹³C) and Bruker DMX500 NMR (500 MHz for ¹H, 160 MHz for ¹¹B, 471 MHz for ¹⁹F) spectrometers. Most assignments were based on a series of 2D NMR experiments. Elemental analyses were performed at VARIO EL III in Shanghai Institute of Organic Chemistry, CAS. HRMS analyses were performed at Bruker micrOTOF II. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Center: CCDC 1445374 (1a)and 1445373 supplementary crystallographic for this the data paper. These Cambridge obtained data can be free of charge from The Crystallographic Data Centre at www.ccdc.cam.ac.uk/data_request/cif.

$$\bigoplus_{\substack{\text{H}\\ \text{H}}} \ominus B(C_6F_5)_3$$

Synthesis of 1a: A solution of 2,6-lutidine (42 mg, 0.39 mmol) and HBcat (4.8 mg, 0.040 mmol) in CH_2Cl_2 (1 mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39mmol) in CH_2Cl_2 (1mL). The reaction mixture was stirred at 25 °C for 24h. Then the volatile was removed under vacuum. The resulting solid was washed with toluene/hexane (2mL/3mL) and pumped to dryness to give compound **1a** (205mg, 85%).

X-ray quality crystals were grown by slow evaporation of a THF solution.

¹H NMR (400 MHz, THF-d₈, 25 °C): δ [ppm] = 12.98 (br s, 1H, N*H*), 8.01 (t, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H4(py)), 7.36(d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H5(py)), 7.31 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H3(py)), 3.30 (q, 2H, ${}^{2}J_{\text{B-H}}$ = 6.1 Hz, C*H*₂), 2.52 (s, 3H, C*H*₃).

¹³C NMR (100 MHz, THF-d₈, 25 °C): δ [ppm] = 166.10 (*C*2(py)), 151.19 (*C*6(py)), 148.93 (dm, ${}^{1}J_{\text{C-F}}$ = 241 Hz, *C*F), 145.20 (*C*4(py)), 139.13 (dm, ${}^{1}J_{\text{C-F}}$ = 241 Hz, *C*F), 137.42 (dm, ${}^{1}J_{\text{C-F}}$ = 245 Hz, *C*F), 124.75 (*C*3(py)), 122.59 (*C*5(py)), 32.43 (q, ${}^{1}J_{\text{C-B}}$ = 38 Hz, *C*H₂), 18.78 (*C*H₃).

¹⁹F NMR (376 MHz, THF-d₈, 25 °C): δ [ppm] = -134.07 (d, 6F, ${}^{3}J_{F-F}$ = 21 Hz, ortho-C₆F₅), -164.93 (t, 3F, ${}^{3}J_{F-F}$ = 20 Hz, para- C₆F₅), -168.81 (t, 6F, ${}^{3}J_{F-F}$ = 21 Hz, meta-C₆F₅).

¹¹B NMR (160 MHz, THF-d₈, 25 °C): δ [ppm] = -13.1 (s).

HRMS (ESI, m/z): calcd for C₂₅H₉BF₁₅N [M+Na⁺] 642.0481, found 642.0485.

$$CI$$
 \oplus
 $B(C_6F_5)_3$

Synthesis of 1d: A solution of 4-chloro-2,6-lutidine (110 mg, 0.78 mmol) and HBcat (4.8mg, 0.040 mmol) in CH_2Cl_2 (1 mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39 mmol) in CH_2Cl_2 (1 mL). The reaction mixture was stirred at 25 °C for 24h. After removal of the volatile under vacuum, the resulting solid was dissolved in CH_2Cl_2 again. The dichloromethane solution was concentrated to ~3mL and stored at -40 °C overnight, affording a white solid which was filtered and dried under vacuum to give compound **1d** (184mg, 72%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 10.92 (br s, 1H, N*H*), 7.23 (s, 1H, *H*5(py)), 6.96 (d, 1H, *H*3(py)), 3.27 (q, 2H, $^2J_{B-H}$ = 5.7 Hz, C*H*₂), 2.55 (s, 3H, C*H*₃).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 167.79 (*C*2(py)), 154.38 (*C*6(py)),

151.09 (*C*4(py)), 148.30 (dm, ${}^{1}J_{C-F} = 234$ Hz, *CF*), 139.05 (dm, ${}^{1}J_{C-F} = 245$ Hz, *CF*), 137.34 (dm, ${}^{1}J_{C-F} = 242$ Hz, *CF*), 125.14 (*C*3(py)), 122.74 (*C*5(py)), 32.75 (q, ${}^{1}J_{C-B} = 37$ Hz, *CH*₂), 20.22 (*C*H₃).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -132.38 (d, 6F, ${}^{3}J_{F-F}$ = 22 Hz, ortho-C₆F₅), -160.73 (t, 3F, ${}^{3}J_{F-F}$ = 20 Hz, para- C₆F₅), -165.14 (t, 6F, ${}^{3}J_{F-F}$ = 20 Hz, meta-C₆F₅).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -13.1 (s).

HRMS (ESI, m/z): calcd for $C_{25}H_8BF_{15}N$ [M+Na⁺] 676.0097, found 676.0095.

$$\bigoplus_{N} \bigoplus_{B(C_6F_5)_3}$$

Synthesis of 1e: A solution of 6-propyl-2-methylpyridine (47mg, 0.39mmol) and HBcat (4.8mg, 0.040mmol) in CH_2Cl_2 (1mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39mmol) in CH_2Cl_2 (1mL). The reaction mixture was stirred at 25 °C for 24h. Then the volatile was removed under vacuum. The resulting solid was washed with toluene/hexane (2ml/3ml) and again pumped to dryness to give compound **1e** (200mg, 81%).

¹H NMR (400 MHz, THF-d₈, 25 °C): δ [ppm] = 12.94 (br s, 1H, N*H*), 8.04 (t, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H4(py)), 7.37(d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H5(py)), 7.31 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H3(py)), 3.31 (q, 2H, ${}^{2}J_{\text{B-H}}$ = 6.1 Hz, C*H*₂), 2.74 (t, 2H, ${}^{3}J_{\text{H-H}}$ = 7.6 Hz, C*H*₂CH₂), 1.64 (m, 2H, ${}^{3}J_{\text{H-H}}$ = 7.4 Hz, CH₂CH₂), 0.95 (t, 3H, ${}^{3}J_{\text{H-H}}$ = 7.4 Hz, C*H*₃CH₂).

¹³C NMR (100 MHz, THF-d₈, 25 °C): δ [ppm] = 166.38 (*C*2(py)), 154.87 (*C*6(py)), 148.89 (dm, ${}^{1}J_{\text{C-F}} = 238 \text{ Hz}$, *C*F), 145.26 (*C*4(py)), 139.13 (dm, ${}^{1}J_{\text{C-F}} = 247 \text{ Hz}$, *C*F), 137.41 (dm, ${}^{1}J_{\text{C-F}} = 250 \text{ Hz}$, *C*F₅), 125.10 (*C*3(py)), 121.96 (*C*5(py)), 35.42 (*C*H₂CH₂),

32.36 (q, ${}^{1}J_{C-B}$ = 38 Hz CH₂B(C₆F₅)₃), 23.26 (CH₃CH₂), 13.31 (CH₃).

¹⁹F NMR (376 MHz, THF-d₈, 25 °C): δ [ppm] = -132.23 (d, 6F, ${}^{3}J_{\text{F-F}}$ = 22 Hz, $ortho\text{-}C_{6}F_{5}$), -163.08 (t, 3F, ${}^{3}J_{\text{F-F}}$ = 20 Hz, $para\text{-}C_{6}F_{5}$), -166.82 (t, 6F, ${}^{3}J_{\text{F-F}}$ = 19 Hz, $meta\text{-}C_{6}F_{5}$).

¹¹B NMR (160 MHz, THF-d₈, 25 °C): δ [ppm] = -13.2 (s).

HRMS (ESI, m/z): calcd for $C_{27}H_{13}BF_{15}N$ [M+NH₄⁺] 651.1245, found 651.1245.

$$\bigoplus_{\substack{(+) \\ N \\ H}} B(C_6F_5)_3$$

Synthesis of 1f: A solution of 2,4,6-collidine (48mg, 0.40mmol) and HBcat (4.8mg, 0.040mmol) in CH_2Cl_2 (1mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39mmol) in CH_2Cl_2 (1mL). The reaction mixture was stirred at 25 °C for 24h. After removal of the volatile under vacuum, the resulting solid was dissolved in CH_2Cl_2 . The dichloromethane solution was concentrated to ~2mL and stored at -40 °C overnight, affording a white solid which was filtered and dried under vacuum to give compound **1f** (94mg, 38%).

¹H NMR (400 MHz, THF-d₈, 25 °C): δ [ppm] = 13.13 (br s, 1H, N*H*), 6.88 (s, 2H, H3(py)), 3.16 (q, 2H, $^2J_{B-H}$ = 7.1 Hz, C H_2), 2.45 (s,6H, C H_3).

¹³C NMR (100 MHz, THF-d₈, 25 °C): δ [ppm] = 174.31 (*C*4(py)), 150.07 (*C*2(py)), 148.80 (dm, ${}^{1}J_{\text{C-F}} = 249 \text{ Hz}$, *C*F), 138.82 (dm, ${}^{1}J_{\text{C-F}} = 249 \text{ Hz}$, *C*F), 137.37 (dm, ${}^{1}J_{\text{C-F}} = 249 \text{ Hz}$, *C*F), 124.87 (*C*3(py)), 35.93 (q, ${}^{1}J_{\text{C-B}} = 39 \text{ Hz}$, *C*H₂), 18.63 (*C*H₃).

¹⁹F NMR (376 MHz, THF-d₈, 25 °C): δ [ppm] = -133.24 (d, 6F, $^3J_{\text{F-F}}$ = 21Hz, ortho-

 C_6F_5), -165.88 (t, 3F, ${}^3J_{\text{F-F}}$ = 20 Hz, para- C_6F_5), -169.26 (t, 6F, ${}^3J_{\text{F-F}}$ = 19 Hz, meta- C_6F_5).

¹¹B NMR (160 MHz, THF-d₈, 25 °C): δ [ppm] = -12.4 (s).

HRMS (ESI, m/z): calcd for $C_{26}H_{11}BF_{15}N$ [M+Na⁺] 656.0643, found 656.0642.

$$\bigoplus_{\substack{\text{O} \\ \text{N} \\ \text{H}}} \bigcirc B(C_6F_5)_3$$

Synthesis of 1f': A solution of 2,4,6-collidine (48mg, 0.40mmol) and HBcat (4.8mg, 0.040mmol) in toluene (1mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39mmol) in toluene (2mL). The reaction mixture was stirred at 50 °C for 24h. After removal of the volatile under vacuum, the resulting solid was dissolved in CH_2Cl_2 . The dichloromethane solution was concentrated to ~2mL and stored at -40 °C overnight, affording a white solid which was filtered and dried under vacuum to give compound **1f'** (188mg, 76%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 10.47 (br s, 1H, N*H*), 7.01 (s, 1H, *H*5(py)), 6.74 (d, 1H, *H*3(py)), 3.21 (q, 2H, ${}^2J_{\text{B-H}}$ = 5.2 Hz, C*H*₂), 2.50 (s, 3H, C5(py)C*H*₃), 2.33 (s, 3H, C4(py)C*H*₃).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 165.24 (*C*2(py)), 159.58 (*C*6(py)), 149.09 (*C*4(py)), 148.36 (dm, ${}^{1}J_{\text{C-F}} = 238 \text{ Hz}$, *C*F), 138.94 (dm, ${}^{1}J_{\text{C-F}} = 250 \text{ Hz}$, *C*F), 137.25 (dm, ${}^{1}J_{\text{C-F}} = 255 \text{ Hz}$, *C*F), 125.37(*C*3(py)), 123.04 (*C*5(py)), 31.86 (q, ${}^{1}J_{\text{C-B}} = 255 \text{ Hz}$, *C*H₂), 22.18 (C4(py)*C*H₃), 20.07 (C5(py)*C*H₃).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -132.39 (d, 6F, ${}^{3}J_{F-F}$ = 21 Hz, ortho-C₆F₅), -161.33 (t, 3F, ${}^{3}J_{F-F}$ = 21 Hz, para- C₆F₅), -165.53 (t, 6F, ${}^{3}J_{F-F}$ = 20 Hz,

meta- C_6F_5).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -13.3 (s).

HRMS (ESI, m/z): calcd for $C_{26}H_{11}BF_{15}N$ [M+Na⁺] 656.0643, found 656.0642.

$$\bigoplus_{N} \bigoplus_{B(C_6F_5)_3}$$

Synthesis of 1g: A solution of 3-methyl-2,6-lutidine (47mg, 0.39mmol) and HBcat (4.8mg, 0.040mmol) in CH_2Cl_2 (1mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39mmol) in CH_2Cl_2 (1mL). The reaction mixture was stirred at 25 °C for 24h. After removal of the volatile under vacuum, the resulting solid was dissolved in CH_2Cl_2 again. The dichloromethane solution was concentrated to ~1mL and stored at -40 °C overnight, affording a white solid which was filtered and dried under vacuum to give compound **1g** (168mg, 68%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 10.75 (br s, 1H, N*H*), 7.82 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 7.9 Hz, *H*4(py)), 7.15 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 7.9 Hz, *H*5(py)), 3.27 (q, 2H, ${}^{2}J_{\text{B-H}}$ = 6.1 Hz, C*H*₂), 2.46 (s, 3H, C6(py)C*H*₃), 2.16 (s, 3H, C3(py)C*H*₃).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 165.17 (*C*2(py)), 148.38 (dm, ${}^{1}J_{\text{C-F}}$ = 238 Hz, *C*F), 147.80 (*C*6(py)), 146.44 (*C*4(py)), 139.12 (dm, ${}^{1}J_{\text{C-F}}$ = 246 Hz, *C*F), 137.25 (dm, ${}^{1}J_{\text{C-F}}$ = 245 Hz, *C*F), 135.33 (*C*3(py)), 122.03 (*C*5(py)), 28.06 (q, ${}^{1}J_{\text{C-B}}$ = 37 Hz, *C*H₂), 19.78 (C6(py)*C*H₃), 18.23 (C3(py)*C*H₃).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -132.44 (d, 6F, ${}^{3}J_{F-F}$ = 22 Hz, ortho-C₆F₅), -160.66 (t, 3F, ${}^{3}J_{F-F}$ = 20 Hz, para- C₆F₅), -165.08 (t, 6F, ${}^{3}J_{F-F}$ = 20 Hz, meta-C₆F₅).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -14.1 (s).

HRMS (ESI, m/z): calcd for $C_{26}H_{11}BF_{15}N$ [M+NH₄⁺] 651.1089, found 651.1088.

$$\begin{array}{c|c}
 & Ph \\
 & \ominus \\
 & B(C_6F_5)_3
\end{array}$$

Synthesis of 1h: A solution of 3-phenyl-2,6-lutidine (144mg, 0.78mmol) and HBcat (4.8mg, 0.040mmol) in CH_2Cl_2 (1mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39mmol) in CH_2Cl_2 (1mL). The reaction mixture was stirred at 25 °C for 24h. Then the volatile was removed under vacuum. The resulting solid was washed with toluene/hexane (1ml/3ml) and again pumped to dryness to give compound **1h** (130mg, 48%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 11.00 (br s, 1H, N*H*), 7.91 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, *H*4(py)), 7.44-7.45 (br m, 3H, *meta*-C₆*H*₅ and *para*-C₆*H*₅), 7.30 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, *H*5(py)), 7.12 (br m, 2H, *ortho*-C₆*H*₅), 3.44 (q, 2H, ${}^{2}J_{\text{B-H}}$ = 6.2 Hz, C*H*₂), 2.55 (s, 3H, C*H*₃).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 164.81 (*C*2(py)), 149.44 (*C*6(py)), 148.26 (dm, ${}^{1}J_{C-F}$ = 237 Hz, *C*F), 146.59 (*C*4(py)), 139.79 (*ipso-C*₆H₅), 139.39 (dm, ${}^{1}J_{C-F}$ = 246 Hz, *C*F), 137.24 (dm, ${}^{1}J_{C-F}$ = 240 Hz, *C*F), 135.14 (*C*3(py)), 129.47 (*para-C*₆H₅), 129.27 (*meta-C*₆H₅), 129.24 (*ortho-C*₆H₅), 122.26(*C*5(py)), 28.50 (q, ${}^{1}J_{C-B}$ = 37 Hz, *C*H₂), 20.05 (*C*H₃).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -132.46 (d, 6F, ${}^{3}J_{F-F}$ = 22 Hz, ortho-C₆F₅), -160.85 (t, 3F, ${}^{3}J_{F-F}$ = 20 Hz, para- C₆F₅), -165.06 (t, 6F, ${}^{3}J_{F-F}$ = 20 Hz, meta-C₆F₅).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -13.9 (s).

HRMS (ESI, m/z): calcd for $C_{31}H_{13}BF_{15}N$ [M+Na⁺] 718.0799, found 718.0799.

$$Ph \bigcirc \\ \bigcirc \\ B(C_6F_5)_3$$

Synthesis of 1h': A solution of 3-phenyl-2,6-lutidine (144mg, 0.78mmol) and HBcat (4.8mg, 0.040mmol) in toluene (1mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39mmol) in toluene (2mL). The reaction mixture was stirred at 70 °C for 24h. After removal of the volatile under vacuum, the resulting solid was dissolved in CH_2Cl_2 . The dichloromethane solution was concentrated to ~2mL and hexane was added drop by drop until precipitation appeared. Then the resulting solution was stored at -40 °C overnight, affording a white solid which was filtered and dried under vacuum to give compound **1h'** (169mg, 62%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 10.88 (br s, 1H, N*H*), 7.85 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, *H*4(py)), 7.51 (br m, 3H, *meta*-C₆*H*₅ and *para*-C₆*H*₅), 7.23 (br m, 2H, *ortho*-C₆*H*₅), 7.07 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, *H*3(py)), 3.35 (q, 2H, ${}^{2}J_{\text{B-H}}$ = 6.2 Hz, C*H*₂), 2.51 (s, 3H, C*H*₃).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 165.42 (*C*2(py)), 148.35 (dm, ${}^{1}J_{\text{C-F}}$ = 243 Hz, *C*F), 147.69 (*C*6(py)), 146.06 (*C*4(py)), 136.25 (*ipso-C*₆H₅), 139.01 (dm, ${}^{1}J_{\text{C-F}}$ = 252 Hz, *C*F), 137.26 (dm, ${}^{1}J_{\text{C-F}}$ = 248 Hz, *C*F), 134.61 (*C*5(py)), 129.85 (*para-C*₆H₅), 129.64 (*meta-C*₆H₅), 129.10 (*ortho-C*₆H₅), 125.20(*C*3(py)), 32.26 (q, ${}^{1}J_{\text{C-B}}$ = 37 Hz, *C*H₂), 19.61 (*C*H₃).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -132.31 (d, 6F, ${}^{3}J_{F-F}$ = 22 Hz, ortho-C₆F₅), -161.01 (t, 3F, ${}^{3}J_{F-F}$ = 20 Hz, para- C₆F₅), -165.32 (t, 6F, ${}^{3}J_{F-F}$ = 20 Hz, meta-C₆F₅).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -13.1 (s).

HRMS (ESI, m/z): calcd for $C_{31}H_{13}BF_{15}N$ [M+Na⁺] 718.0799, found 718.0799.

$$Ph \xrightarrow{\text{H}} B(C_6F_5)_3$$

Synthesis of 1i: A solution of 2-methyl-6-phenylpyridine (86mg, 0.51mmol) and HBcat (6.0mg, 0.050mmol) in CH_2Cl_2 (1mL) was added to the solution of $B(C_6F_5)_3$ (256mg, 0.50mmol) in CH_2Cl_2 (1mL). The reaction mixture was stirred at 25 °C for 24h. Then the volatile was removed under vacuum, and the resulting solid was dissolved in toluene. The resulting toluene solution was concentrated to 2~3mL and stored at -40 °C overnight, affording a white solid which was filtered and dried under vacuum to give compound **1i** (272mg, 80%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 11.23 (br s, 1H, N*H*), 8.02 (t, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, *H*4(py)), 7.70 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 7.4 Hz, *H*5(py)), 7.71-7.63 (m, 3H, C₆*H*₅), 7.50 (d, 2H, ${}^{3}J_{\text{H-H}}$ = 7.4 Hz, *ortho*-C₆*H*₅), 7.05(d, 1H, ${}^{3}J_{\text{H-H}}$ = 7.4 Hz, *H*3(py)), 3.41 (q, 2H, ${}^{2}J_{\text{B-H}}$ = 8.0 Hz, C*H*₂).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 167.33 (*C*2(py)), 150.53 (*C*6(py)), 148.33 (dm, ${}^{1}J_{\text{C-F}} = 235 \text{ Hz}$, *C*F), 145.60 (*C*4(py)), 140.16 (*ipso-C*₆H₅), 139.07 (dm, ${}^{1}J_{\text{C-F}} = 249 \text{ Hz}$, *C*F), 137.35 (dm, ${}^{1}J_{\text{C-F}} = 240 \text{ Hz}$, *C*F), 133.37 (*C*5(py)), 130.94 (*meta-C*₆H₅), 126.69 (*ortho-C*₆H₅), 125.79(*C*3(py)), 119.96 (*para-C*₆H₅), 32.60 (q, ${}^{1}J_{\text{C-B}} = 36 \text{ Hz}$, *C*H₂).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -132.27 (d, 6F, ${}^{3}J_{F-F}$ = 22 Hz, ortho-C₆F₅), -160.86 (t, 3F, ${}^{3}J_{F-F}$ = 20 Hz, para- C₆F₅), -165.18 (t, 6F, ${}^{3}J_{F-F}$ = 20 Hz, meta-C₆F₅).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -13.1 (s).

HRMS (ESI, m/z): calcd for $C_{30}H_{11}BF_{15}N$ [M+Na⁺] 704.0643, found 704.0642.

$$\bigoplus_{\substack{\text{H}\\ \text{N}\\ \text{H}}} \ominus_{\text{B}(\text{C}_6\text{F}_5)_3}$$

Synthesis of 1j: A solution of quinaldine (56mg, 0.39mmol) and HBcat (4.8mg, 0.040mmol) in CH_2Cl_2 (1mL) was added to the solution of $B(C_6F_5)_3$ (200mg, 0.39mmol) in CH_2Cl_2 (1mL). The reaction mixture was stirred at 25 °C for 24h. Then the volatile was removed under vacuum, and the resulting solid was dissolved in toluene. The resulting toluene solution was concentrated to 5mL and stored at -40 °C overnight, affording a white solid which was filtered and dried under vacuum to give compound **1j** (177mg, 70%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 11.24 (br s, 1H, N*H*), 8.41 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.8 Hz, *H*4(qu)), 8.03 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.2 Hz, *H*5(qu)), 7.98 (dt, 1H, ${}^{3}J_{\text{H-H}}$ = 7.9 Hz, ${}^{4}J_{\text{H-H}}$ = 1.3 Hz, *H*7(qu)), 7.79(dt, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, ${}^{4}J_{\text{H-H}}$ = 1.1 Hz, *H*6(qu)), 7.72 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.8 Hz, *H*3(qu)), 3.60 (q, 2H, ${}^{2}J_{\text{B-H}}$ = 5.9 Hz, C*H*₂).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 171.16 (*C*2(qu)), 148.39 (dm, ${}^{1}J_{\text{C-F}}$ = 241 Hz, *C*F), 144.78 (*C*4(qu)), 139.10 (dm, ${}^{1}J_{\text{C-F}}$ = 250 Hz, *C*F), 137.33 (dm, ${}^{1}J_{\text{C-F}}$ = 240 Hz, *C*F), 136.64 (*C*8a(qu)), 135.18 (*C*7(qu)), 129.57 (*C*5(qu)), 129.47 (*C*6(qu)), 125.99 (*C*4a(qu)), 123.87 (*C*3(qu)), 118.70 (*C*8(qu)), 35.08 (q, ${}^{1}J_{\text{C-B}}$ = 36 Hz, *C*H₂).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -132.28 (d, 6F, ${}^{3}J_{F-F}$ = 22 Hz, ortho-C₆F₅), -160.83 (t, 3F, ${}^{3}J_{F-F}$ = 20 Hz, para-C₆F₅), -165.26 (t, 6F, ${}^{3}J_{F-F}$ = 20 Hz, meta-C₆F₅).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -12.8 (s).

HRMS (ESI, m/z): calcd for $C_{28}H_9BF_{15}N$ [M+Na⁺] 678.0486, found 678.0486.

$$\begin{array}{c|c}
 & \bigcirc \\
 & \bigcirc \\
 & B(C_6F_5)_3
\end{array}$$

Synthesis of 2: A solution of $B(C_6F_5)_3$ (410 mg, 0.8 mmol) in toluene (2mL) was added to the solution of ((6-methyl-2-pyridyl)methyl)lithium (90 mg, 0.8 mmol) in toluene at room temperature. Then the reaction mixture was stirred at room temperature for 3 h. Afterwards, hexane (5 mL) was added and the resulting slurry was filtered and washed with hexane (2x2 mL). The resulting solid was pumped to dryness to give compound lithium (6-methyl-2-pyridyl)methyltris(pentafluorophenyl)borate (430mg, 95%) and it was used without further purification. A solution of ClBcat (99 mg, 0.64 mmol) in toluene (2 mL) added the solution of lithium was to (6-methyl-2-pyridyl)methyltris(pentafluorophenyl)borate (400 mg, 0.64 mmol) in toluene (5 mL) at room temperature. The reaction mixture was stirred at room temperature for 5 minutes. Then the resulting slurry was filtered and hexane was added into the filtrate until white precipitation appeared. The solution was stored at -20 °C overnight, affording a white solid which was filtered and dried under vacuum to give compound 2 with 1/2 toluene (276 mg, 55%).

X-ray quality crystals were grown from CH_2Cl_2 solution at -20 °C.

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 8.05 (t, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H4(py)), 7.53(d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H5(py)), 7.40 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 8.0 Hz, H3(py)), 7.40 (dd, 2H, ${}^{3}J_{\text{H-H}}$ = 6.0 Hz, ${}^{4}J_{\text{H-H}}$ = 3.4 Hz, C(2)H(cat)), 7.33 (dd, 2H, ${}^{3}J_{\text{H-H}}$ = 6.0 Hz, ${}^{4}J_{\text{H-H}}$ =

3.4 Hz, C(3)H(cat)), 3.30 (q, 2H, ${}^{2}J_{B-H}$ = 6.1 Hz, C H_2), 2.52 (s, 3H, C H_3).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 171.06 (*C*2(py)), 153.23 (*C*6(py)), 148.54 (dm, ${}^{1}J_{\text{C-F}}$ = 244 Hz, *C*F), 147.09 (*C*1(cat)), 146.16 (*C*4(py)), 139.08 (dm, ${}^{1}J_{\text{C-F}}$ = 246 Hz, *C*F), 137.26 (dm, ${}^{1}J_{\text{C-F}}$ = 240Hz, *C*F), 126.25 (*C*5(py)), 125.55 (*C*3(cat)), 123.51 (*C*3(py)), 114.23 (*C*2(cat)), 35.75 (q, ${}^{1}J_{\text{C-B}}$ = 38 Hz, *C*H₂), 21.68 (*C*H₃).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -132.41 (d, 6F, ${}^{3}J_{F-F}$ = 22 Hz, ortho-C₆F₅), -161.51 (t, 3F, ${}^{3}J_{F-F}$ = 20 Hz, para- C₆F₅), -165.83 (t, 6F, ${}^{3}J_{F-F}$ = 20 Hz, meta-C₆F₅).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 26.9 (br s, cat*B*), -13.2 (s, $B(C_6F_5)_3$).

Element analysis: calcd for $C_{31}H_{12}B_2F_{15}NO_2+1/2$ toluene C 52.91, H 2.06, N 1.79%; found C 53.76, H 2.05, N 1.94%.

$$\begin{array}{c|c}
 & \bigcirc \\
 & HB(C_6F_5)_3 \\
 & O & O \\
\end{array}$$

Synthesis of [LutBcat][HB(C_6F_5)₃]: A solution of 2,6-lutidine (42mg, 0.39mmol) and HBcat (48mg, 0.40mmol) in hexane (3mL) was added to the solution of B(C_6F_5)₃ (200mg, 0.39mmol) in hexane (10mL). A white precipitation appeared immediately and the reaction mixture was stirred at room temperature for 10 minutes. Then the resulting slurry was filtered and washed with hexane (2x2mL), and the resulting solid was dried under vacuum to give compound [LutBcat][HB(C_6F_5)₃] (211mg, 73%).

¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 8.45 (t, 1H, $^{3}J_{H-H}$ = 8.0 Hz, H4(py)),

7.81(d, 2H, ${}^{3}J_{\text{H-H}} = 8.0 \text{ Hz}$, H3(py)), 7.53 (dd, 2H, ${}^{3}J_{\text{H-H}} = 6.0 \text{ Hz}$, ${}^{4}J_{\text{H-H}} = 3.4 \text{ Hz}$, C(2)H(cat)), 7.42 (dd, 2H, ${}^{3}J_{\text{H-H}} = 6.0 \text{ Hz}$, ${}^{4}J_{\text{H-H}} = 3.4 \text{ Hz}$, C(3)H(cat)), 3.58 (q, 1H, ${}^{1}J_{\text{B-H}} = 87 \text{ Hz}$, BH), 2.83 (s, 6H, C H_3).

¹³C NMR (100 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 157.12 (*C*2(py)) 149.12(*C*4(py)), 148.61 (dm, ${}^{1}J_{\text{C-F}}$ = 240 Hz, *C*F), 147.11 (*C*2(py)), 138.30 (dm, ${}^{1}J_{\text{C-F}}$ = 240 Hz, *C*F), 136.79 (dm, ${}^{1}J_{\text{C-F}}$ = 240 Hz, *C*F), 126.84 (*C*3(py)), 126.04 (*C*3(cat)), 114.57 (*C*2(cat)), 22.01 (*C*H₃).

¹⁹F NMR (376 MHz, CD₂Cl₂, 25 °C): δ [ppm] = -133.98 (s, 6F, *ortho*- C₆F₅), -164.34 (s, 3F, *para*- C₆F₅), -167.37 (s, 6F, *meta*-C₆F₅).

¹¹B NMR (160 MHz, CD₂Cl₂, 25 °C): δ [ppm] = 26.8 (s, 1B, *B*cat) -25.4 (d, 1B, ${}^{1}J_{B-H}$ = 91 Hz, *B*H).

Element analysis: calcd for $C_{31}H_{14}B_2F_{15}NO_2$ C 50.38, H 1.91, N 1.90%; found C 50.48, H 1.86, N 2.10%.

Synthesis of 2-benzyl-6-methylpyridine: A vigorously magnetically stirred mixture of PhI (594mg, 2.9mmol), **1a** (450mg, 0.73mmol), Pd(PPh₃)₄ (84mg, 0.073 mmol), and t-BuOK (326mg, 2.9mmol) in xylene (6mL) was heated at 140 °C (oil bath) under N₂ atmosphere for 24 h. After removal of the volatile under vacuum, the resulting oil was extracted with CH₂Cl₂ (3x10mL). Then the volatile was removed under vacuum, and the resulting oil was purified by column chromatography (petroleum ether--EtOAc, 10:1) to give compound **4a** (110mg, 82%).

¹H NMR (400 MHz, CDCl₃, 25 °C): δ [ppm] = 7.44 (t, 1H), 7.19-7.32 (m, 5H), 6.97 (d, 1H), 6.85 (d, 1H), 4.14 (s, 2H), 2.55 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, 25 °C): δ [ppm] = 160.51, 157.97, 139.77, 136.82, 129.31, 128.64, 126.42, 120.83, 120.09, 44.86, 24.69.

HRMS (ESI, m/z): calcd for $C_{13}H_{13}N$ [M+H⁺] 184.1126, found 184.1121.

Synthesis of 2-benzyl-6-phenylpyridine: A vigorously magnetically stirred mixture of PhI (539mg, 2.6mmol), **1i** (450mg, 0.66mmol), Pd(PPh₃)₄ (76mg, 0.066mol), and t-BuOK(296mg, 2.6mmol) in xylene (6mL) was heated at 140 °C (oil bath) under N₂ atmosphere for 24 h. After removal of the volatile under vacuum, the resulting oil was extracted with CH₂Cl₂ (3x10mL). Then the volatile was removed under vacuum, and the resulting oil was purified by column chromatography (petroleum ether--EtOAc, 20:1) to give **4i** (89mg, 55%).

¹H NMR (400 MHz, CDCl₃, 25 °C): δ [ppm] = 8.03 (d, 2H, ${}^{3}J_{\text{H-H}}$ = 7.2 Hz, H13), 7.64 (t, 1H, ${}^{3}J_{\text{H-H}}$ = 7.7 Hz, H4), 7.56 (d, 1H, ${}^{3}J_{\text{H-H}}$ = 7.7 Hz, H3), 7.49 (t, 2H, ${}^{3}J_{\text{H-H}}$ = 7.6 Hz, H14), 7.44 (t, 2H, ${}^{3}J_{\text{H-H}}$ = 7.2 Hz, H15), 7.37 (d, 2H, ${}^{3}J_{\text{H-H}}$ = 7.6 Hz, H9), 7.35 (t, 2H, ${}^{3}J_{\text{H-H}}$ = 7.6 Hz, H10), 7.26 (t, 1H, ${}^{3}J_{\text{H-H}}$ = 7.6 Hz, H11), 7.03 (d, 2H, ${}^{3}J_{\text{H-H}}$ = 7.5 Hz, H5), 4.27 (s, 2H, H7).

¹³C NMR (100 MHz, CDCl₃, 25 °C): δ [ppm] = 161.03 (*C*6), 156.98 (*C*2), 139.84 (*C*8), 139.77 (*C*12), 137.27 (*C*4), 129.39 (*C*9), 128.92 (*C*15), 128.82 (*C*10), 128.65 (*C*14), 127.14 (*C*13), 126.44 (*C*11), 121.47 (*C*5), 118.11 (*C*3), 45.06 (*C*7).

HRMS (ESI, m/z): calcd for $C_{18}H_{15}N$ [M+H⁺] 246.1287, found 246.1277.

II. Mechanism study

Kinetic isotope effect experiments

A solution of 2,6-lutidine (8.4mg, 0.078mmol) or 2,6-lutidine-d₆ (8.8mg, 0.078mmol), and HBcat (1.0mg, 0.0083mmol) in CD_2Cl_2 (0.2mL) was added to the solution of $B(C_6F_5)_3$ (40mg, 0.078mmol) in CD_2Cl_2 (0.3mL). The resulting solution was transferred to a J. Young NMR tube, and analyzed by ¹¹B NMR spectroscopy. From the ¹¹B NMR spectra, the initial rates for the formation of **1a** were determined. KIE $k_H/k_D = 5.8$.

Figure S1 Formation of 1a when 2,6-lutidine or 2,6-lutidine-d₆ was used

Equilibrium reaction experiments

A solution of $[2,6\text{-Me}_2\text{C}_5\text{H}_3\text{NH}][\text{HB}(\text{C}_6\text{F}_5)_3]$ (12.6mg, 0.020mmol) in CD_2Cl_2 (0.2mL) was added to the solution of **2** (15.0mg, 0.020mmol) in CD_2Cl_2 (0.3mL). The resulting solution was transferred to a J. Young NMR tube, and ^1H NMR spectra was carried out to calculate the equilibrium constant of this reaction.

A solution of 1a (12.5mg, 0.020mmol) in CD_2Cl_2 (0.2mL) was added to the solution of [2,6-lutidine/Bcat][HB(C_6F_5)₃] (15.0mg, 0.020mmol) in CD_2Cl_2 (0.3mL). The resulting solution was transferred to a J. Young NMR tube, and 1H NMR spectra was carried out to calculate the equilibrium constant of this reaction.

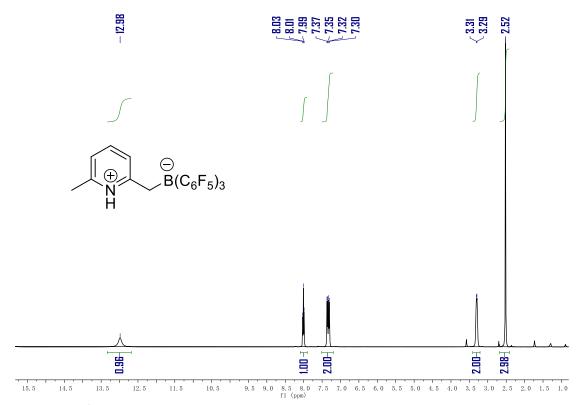


Figure S2: 1 H NMR spectrum of $\mathbf{1a}$ in THF- d_{8}

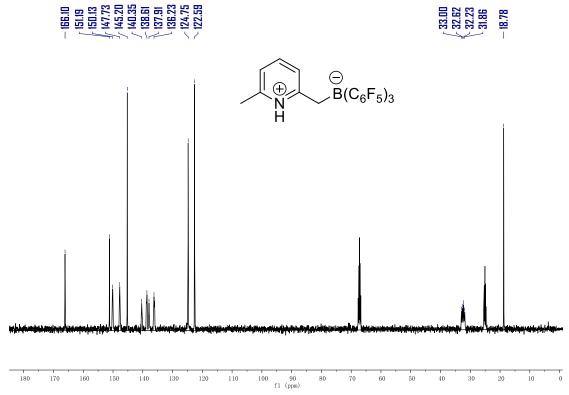
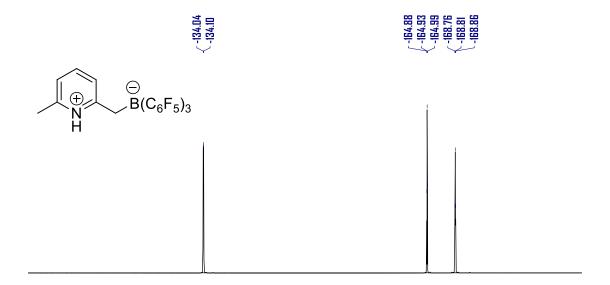



Figure S3: ¹³C NMR spectrum of **1a** in THF-d₈

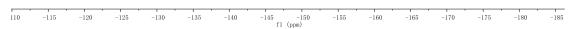


Figure S4: ¹⁹F NMR spectrum of **1a** in THF-d₈

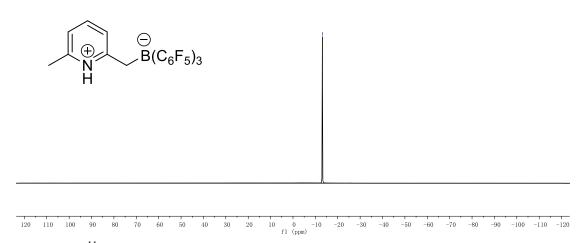


Figure S5: ¹¹B NMR spectrum of **1a** in THF-d₈

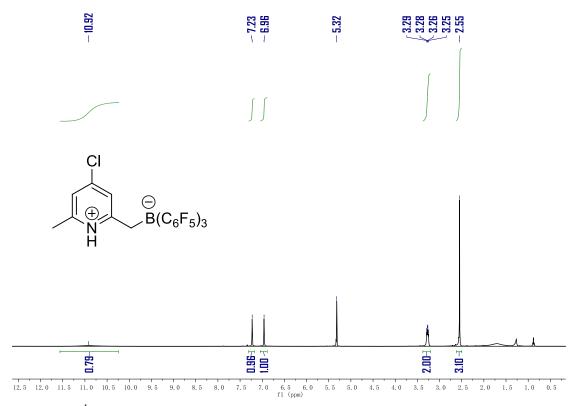


Figure S6: ^{1}H NMR spectrum of $\mathbf{1d}$ in $CD_{2}Cl_{2}$

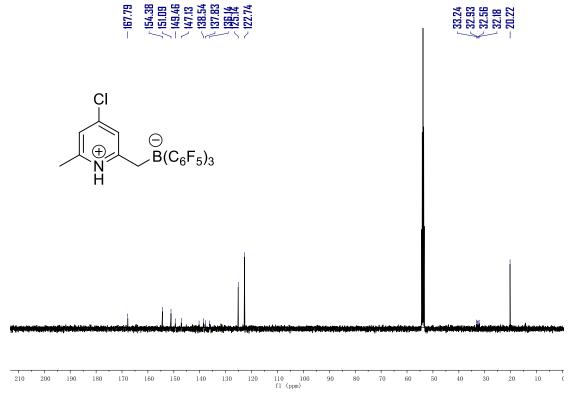


Figure S7: 13 C NMR spectrum of $\mathbf{1d}$ in CD_2Cl_2

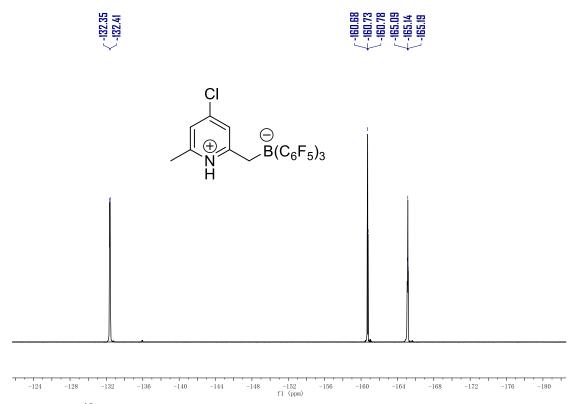


Figure S8: ¹⁹F NMR spectrum of **1d** in CD₂Cl₂

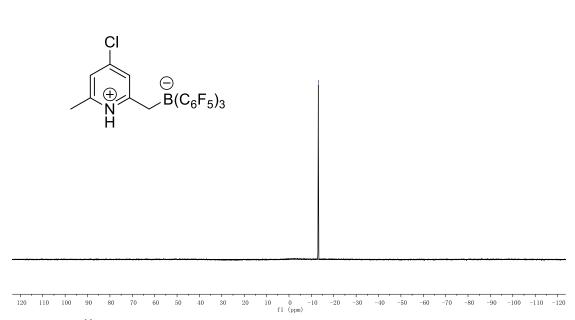


Figure S9: 11 B NMR spectrum of $\mathbf{1d}$ in CD_2Cl_2

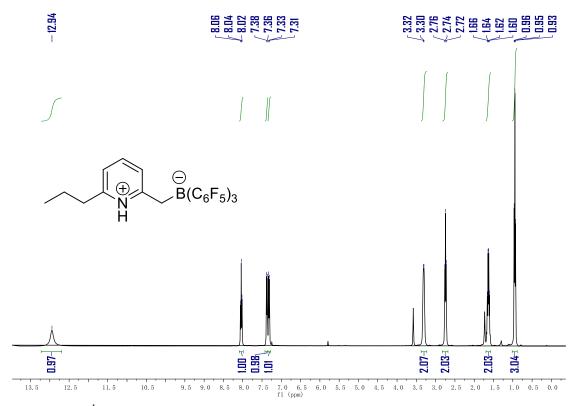


Figure S10: ^{1}H NMR spectrum of $\mathbf{1e}$ in THF-d $_{8}$

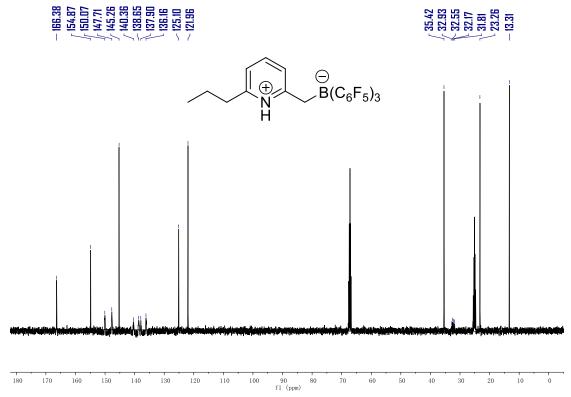


Figure S11: 13 C NMR spectrum of 1e in THF- d_8

Figure S12: 19 F NMR spectrum of 1e in THF- d_8

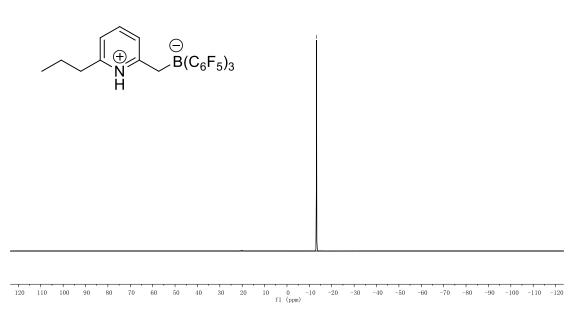


Figure S13: ^{11}B NMR spectrum of $\boldsymbol{1e}$ in THF- d_8

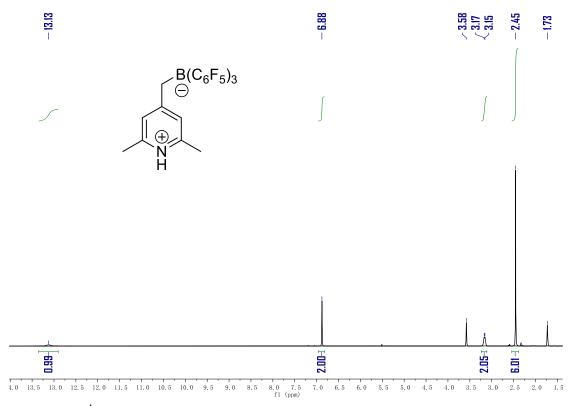


Figure S14: ^{1}H NMR spectrum of 1f in THF- d_{8}

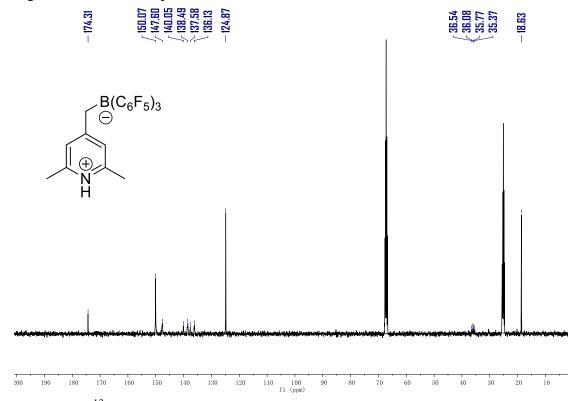


Figure S15: ^{13}C NMR spectrum of ${\bf 1f}$ in THF- d_8

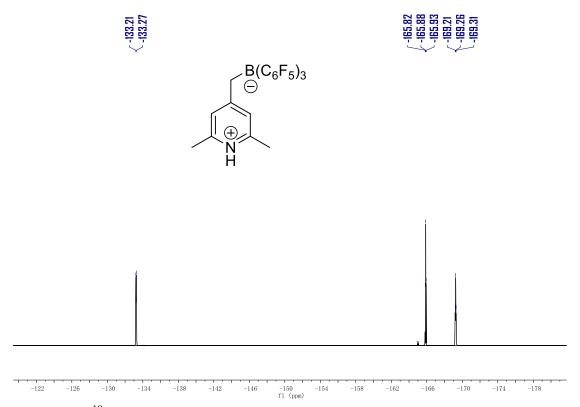
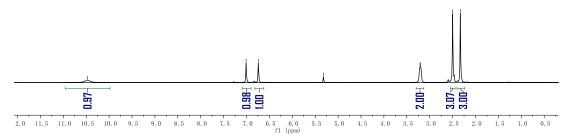



Figure S16: ^{19}F NMR spectrum of 1f in THF- d_8

Figure S17: 11 B NMR spectrum of **1f** in THF- d_8

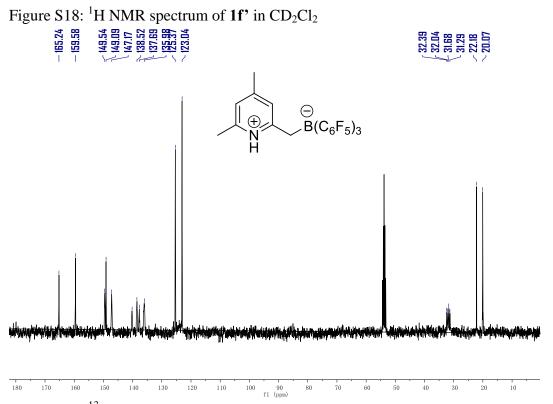
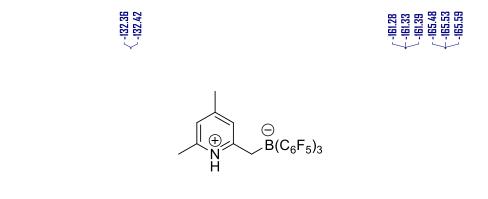



Figure S19: ¹³C NMR spectrum of **1f**' in CD₂Cl₂

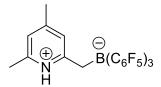



Figure S20: ¹⁹F NMR spectrum of **1f'** in CD₂Cl₂

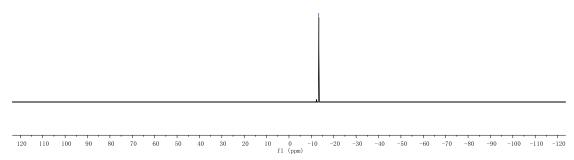


Figure S21: ^{11}B NMR spectrum of 1f' in CD_2Cl_2

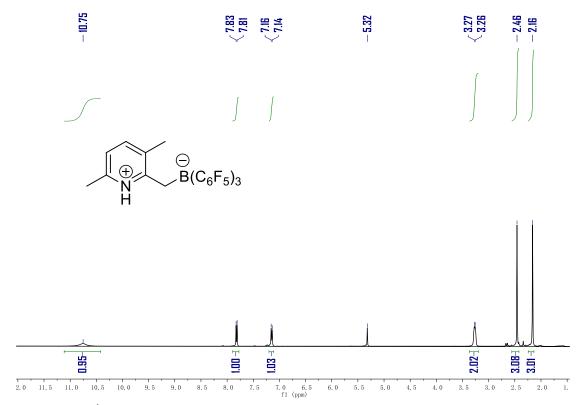


Figure S22: ¹H NMR spectrum of **1g** in CD₂Cl₂

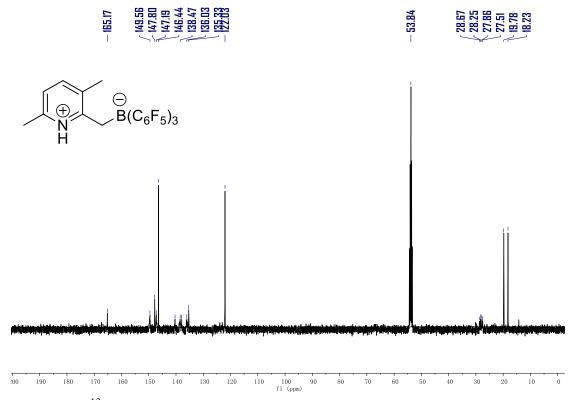


Figure S23: 13 C NMR spectrum of 1g in CD_2Cl_2

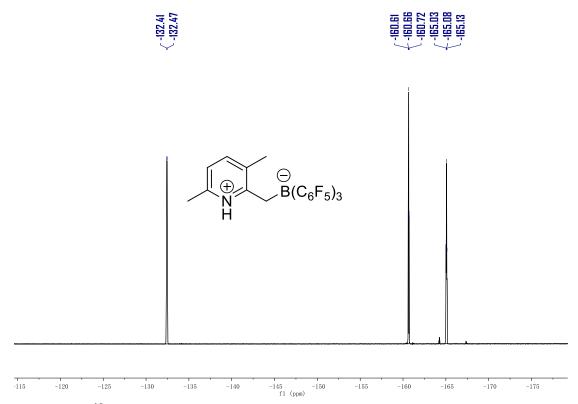


Figure S24: 19 F NMR spectrum of 1g in CD_2Cl_2

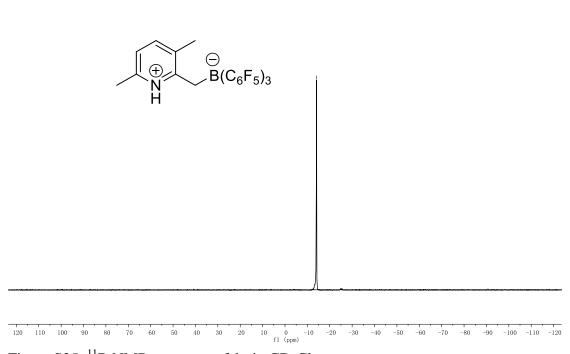


Figure S25: ^{11}B NMR spectrum of $\mathbf{1g}$ in CD_2Cl_2

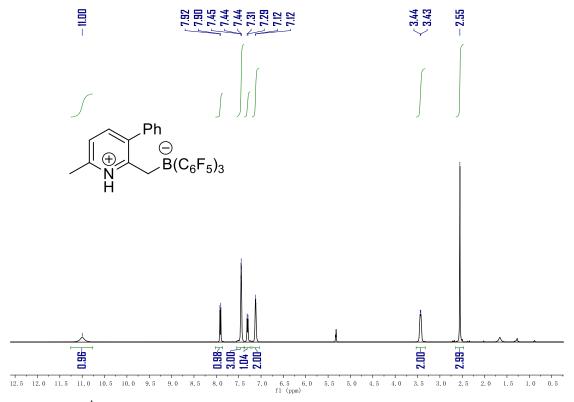


Figure S26: ^{1}H NMR spectrum of $\mathbf{1h}$ in $\text{CD}_{2}\text{Cl}_{2}$

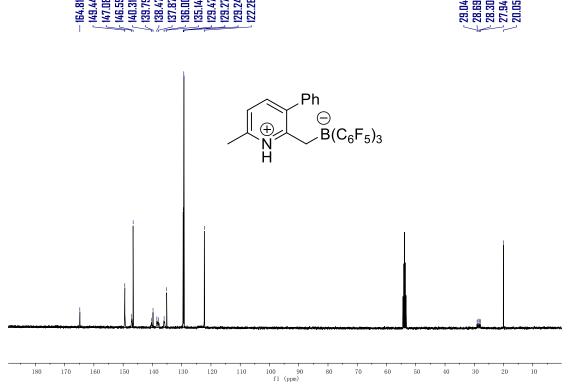


Figure S27: ¹³C NMR spectrum of **1h** in CD₂Cl₂

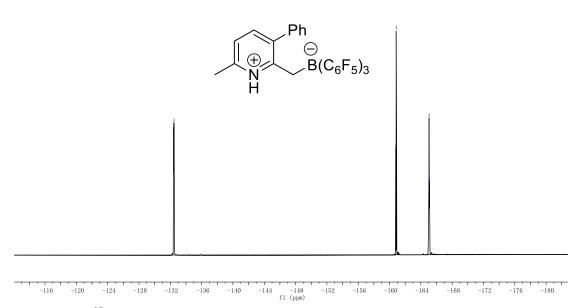


Figure S28: ¹⁹F NMR spectrum of **1h** in CD₂Cl₂

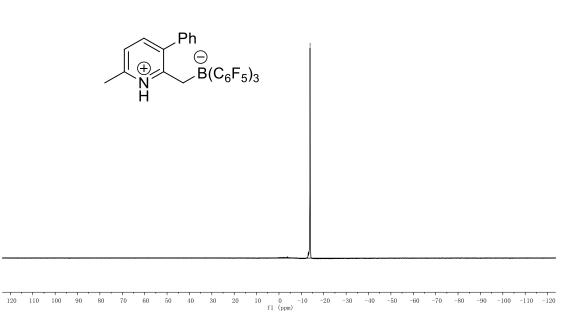


Figure S29: ¹¹B NMR spectrum of **1h** in CD₂Cl₂

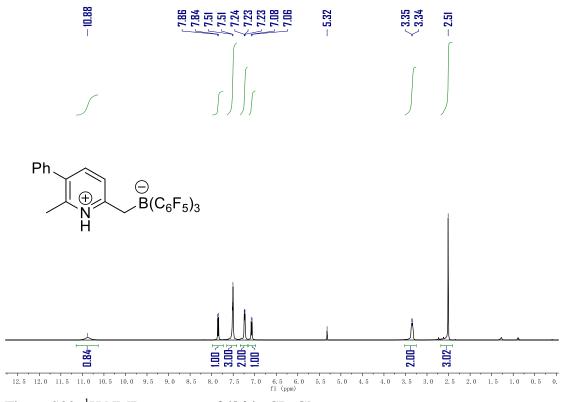


Figure S30: ^{1}H NMR spectrum of $1h^{\prime}$ in $CD_{2}Cl_{2}$

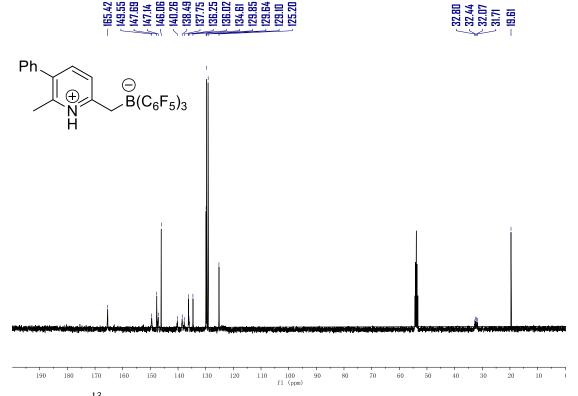


Figure S31: 13 C NMR spectrum of 1h, in CD_2Cl_2

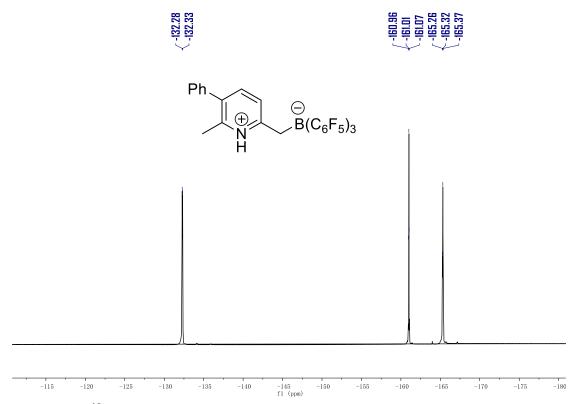


Figure S32: 19 F NMR spectrum of $1h^{\prime}$ in CD_2Cl_2

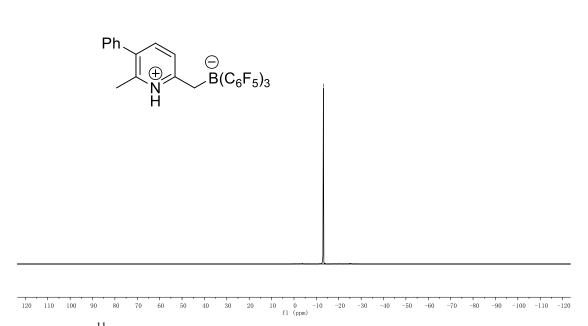
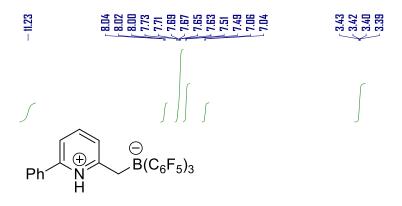



Figure S33: ¹¹B NMR spectrum of **1h**' in CD₂Cl₂

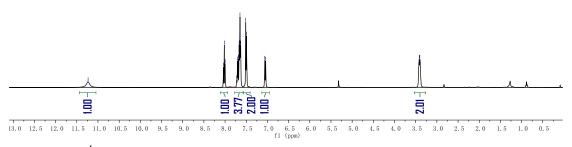


Figure S34: ^{1}H NMR spectrum of 1i in $CD_{2}Cl_{2}$

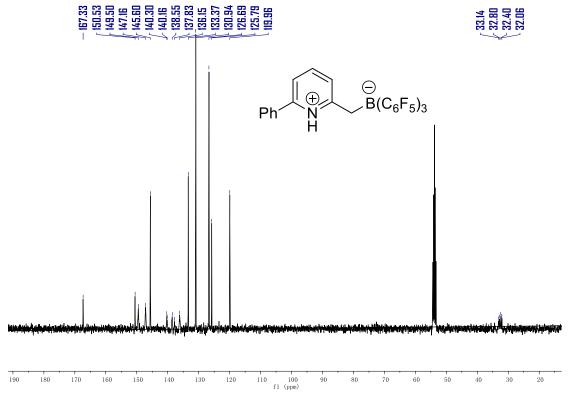


Figure S35: 13 C NMR spectrum of 1i in CD_2Cl_2

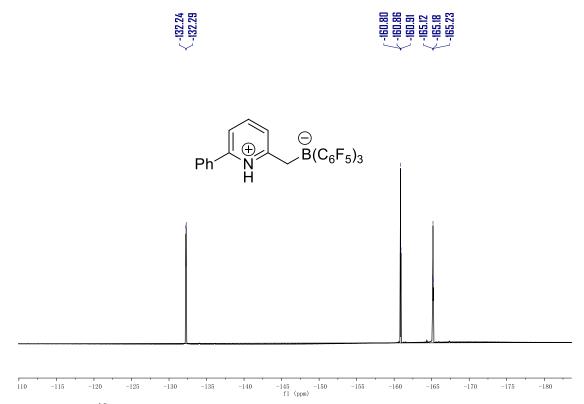


Figure S36: 19 F NMR spectrum of 1i in CD_2Cl_2

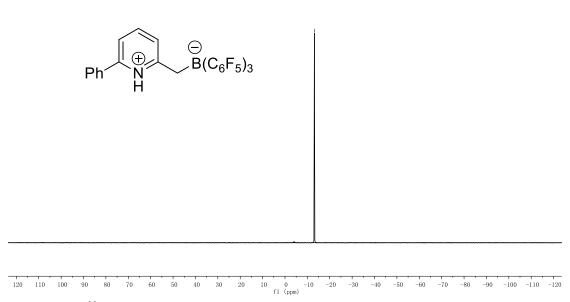
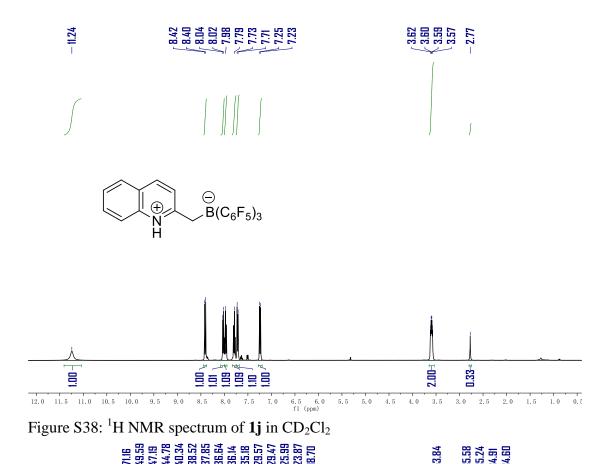



Figure S37: ^{11}B NMR spectrum of 1i in CD_2Cl_2

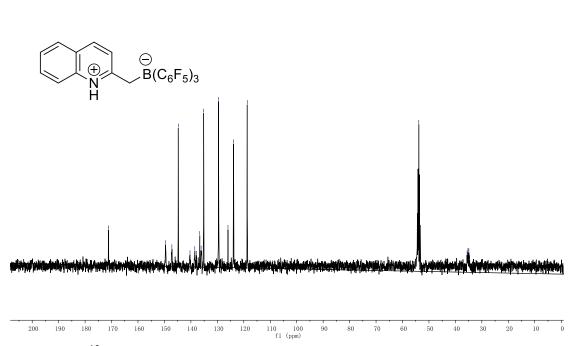


Figure S39: 13 C NMR spectrum of 1j in CD_2Cl_2

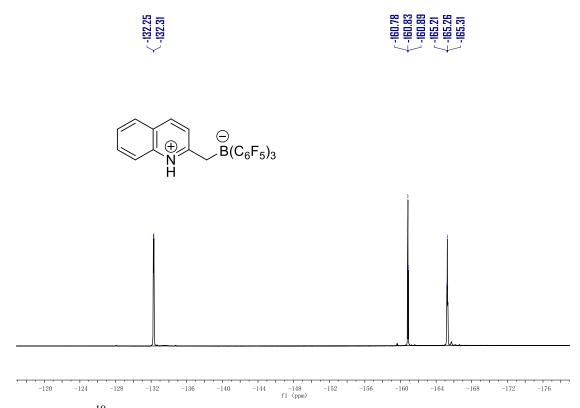


Figure S40: ¹⁹F NMR spectrum of **1j** in CD₂Cl₂

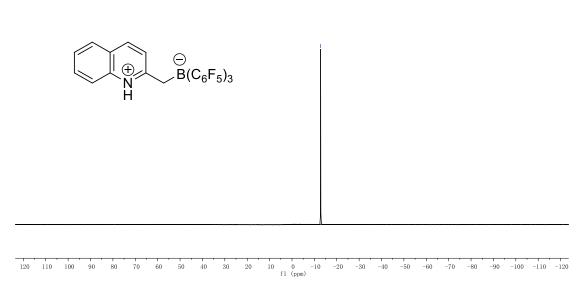


Figure S41: 11 B NMR spectrum of 1j in CD_2Cl_2

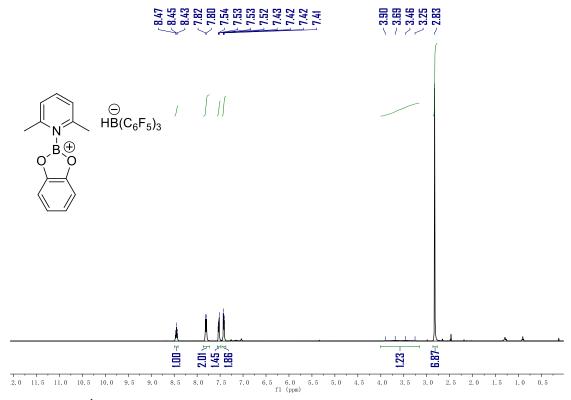


Figure S42: 1 H NMR spectrum of [[2,6-lutidine/Bcat]/HB($C_{6}F_{5}$)₃] in $CD_{2}Cl_{2}$

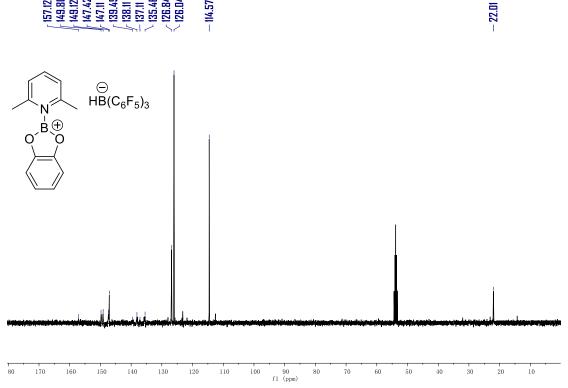


Figure S43: 13 C NMR spectrum of [[2,6-lutidine/Bcat]/HB(C_6F_5)₃] in CD_2Cl_2

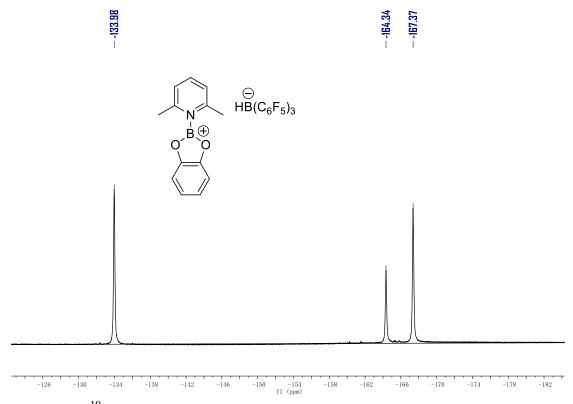


Figure S44: 19 F NMR spectrum of [[2,6-lutidine/Bcat]/HB(C $_6$ F $_5$) $_3$] in CD $_2$ Cl $_2$

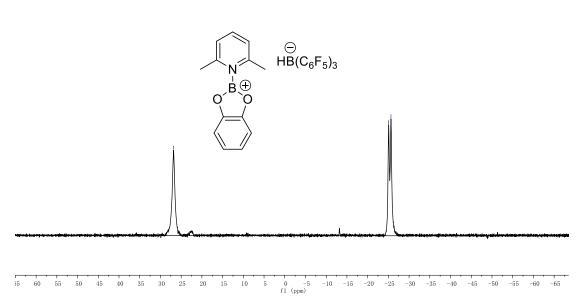
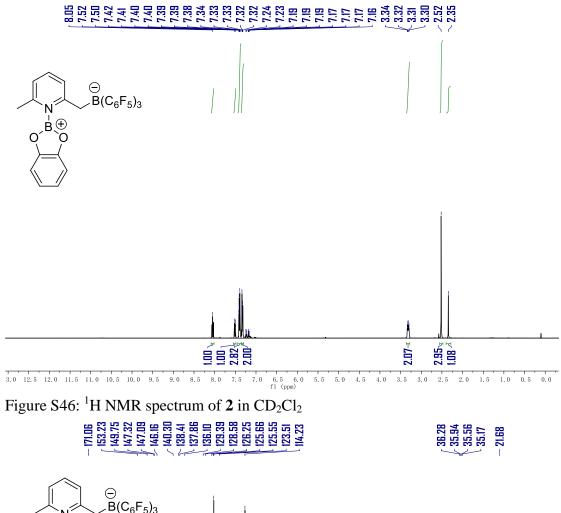



Figure S45: ^{11}B NMR spectrum of [[2,6-lutidine/Bcat]/HB(C $_6F_5)_3]$ in CD_2Cl_2

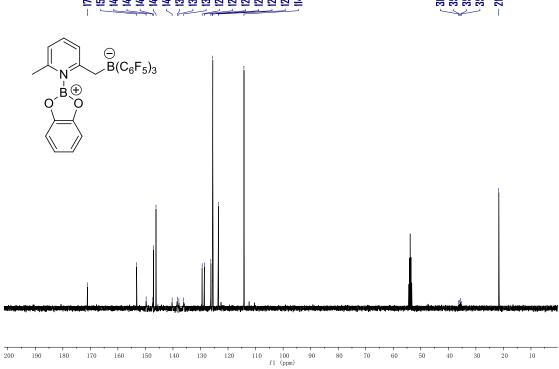


Figure S47: 13 C NMR spectrum of **2** in CD₂Cl₂

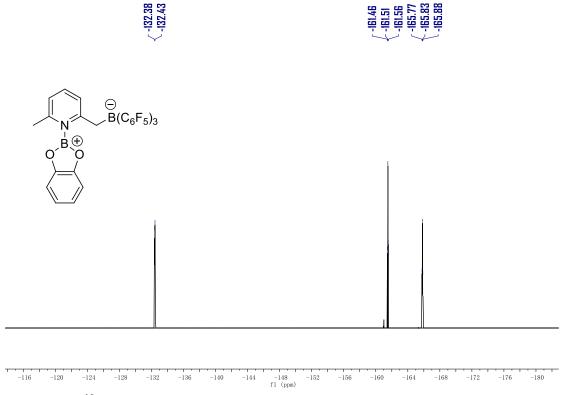


Figure S48: ¹⁹F NMR spectrum of **2** in CD₂Cl₂

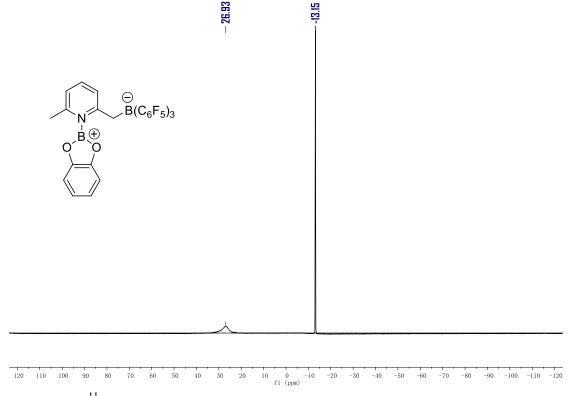


Figure S49: ¹¹B NMR spectrum of **2** in CD₂Cl₂

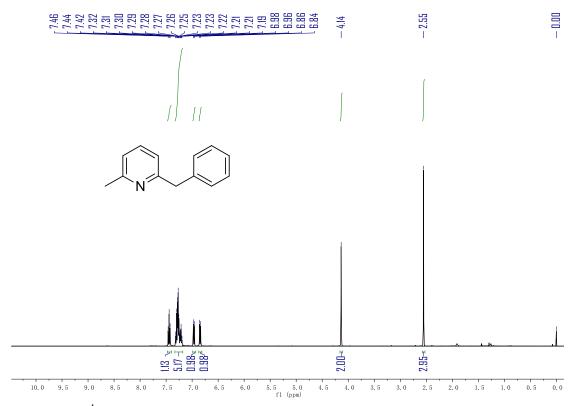


Figure S50: 1 H NMR spectrum of $\mathbf{4a}$ in CDCl $_{3}$

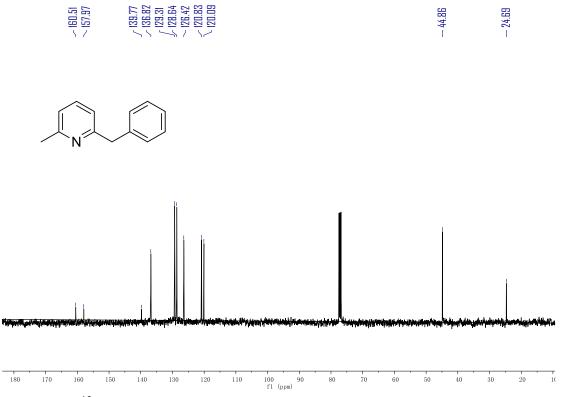
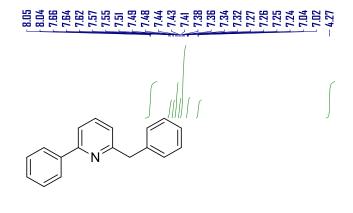



Figure S51: ¹³C NMR spectrum of **4a** in CDCl₃

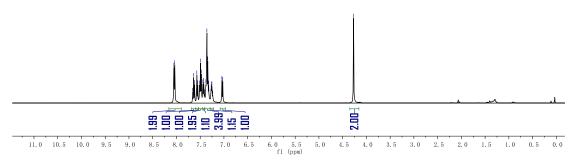


Figure S52: 1 H NMR spectrum of **4i** in CDCl₃

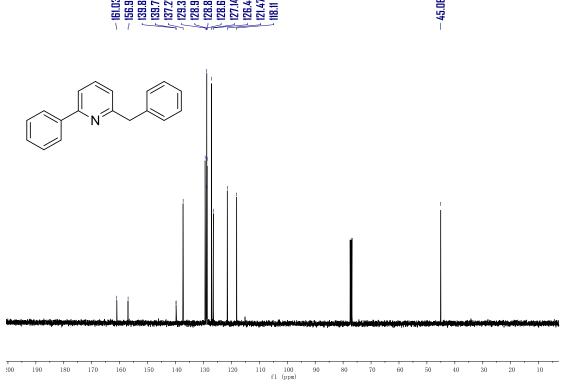


Figure S53: 13 C NMR spectrum of **4i** in CDCl₃

$$Lut + B(C_6F_5)_3$$

$$H$$

$$C_6F_5)_3$$

$$H$$

$$C_6F_5)_3$$

$$E$$

$$C_6F_5)_3$$

$$E$$

$$C_6F_5)_3$$

$$C_6F_5)_3$$

$$C_6F_5)_3$$

$$C_7 \oplus C$$

$$C_7 \oplus C$$

$$C_8 \oplus C$$

$$C_8F_5)_3$$

$$C_9 \oplus C$$

$$C_9F_5)_3$$

$$C_9 \oplus C$$

$$C_9F_5)_3$$

$$C_9 \oplus C$$

$$C_9F_5)_3$$

$$C_9 \oplus C$$

$$C_9F_5)_3$$

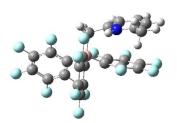
Figure S54: Proposed mechanism of formation of 1a

III. Computation details

Quantum chemical calculations were all performed at the density functional theory (DFT) level using the hybrid meta-GGA M06-2x functional,1 which has been proven to give reliable results to the structural and energetic properties of non-covalent systems and reaction energy barriers.2 The M06-2x functional has a mean absolute error in energy barriers of about 1.3 kcal/mol. To reduce computational costs, a combined basis set was used: The 6-31+G(d,p) basis set3 was employed for the atoms involved directly in the reaction which are O, B, the H atoms bonded to B, the C and H atoms of 2,6-lutidine; The 6-31G(d) basis set was used for the rest atoms. Single-point energy calculations were then performed with the full 6-31+G(d,p) basis set for all the atoms and the empirical long-range correction of Grimme et al.4 All the DFT calculations were performed with a pruned (99,590) integration grid.

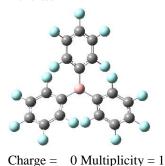
Full geometry optimization were carried out in the dichlromethane solution which

was modeled by the polarizable continuum solvation model (IEFPCM)5 with radii and non-electrostatic terms for Truhlar and coworkers' SMD solvation model.6 This solvation model is by far the most reliable one in predicting solvation free energies. The convergence criteria used for the geometry optimization are 4.50×10^{-4} au. for gradients, and 1.80×10^{-3} au. for displacements. Harmonic vibrational analyses were carried out to confirm if the optimized structure is a local minima or a first order transition state and to provide zero-point vibrational energy corrections and thermal corrections to various thermodynamic properties. Transition states were further confirmed by IRC calculations.7 All the calculations were performed by using the Gaussian 09 program.8


References:

- (a) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101; (b) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2006, 110, 5121.
- 2. Zhao, Y.; Truhlar, D. G. Theo. Chem. Acc. 2008, 120, 215.
- (a) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639-5648.
 (b) Krishnan, R.;
 Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
- 4. Grimme, S.; Antony, J.; Ehrlich S.; Krieg, H. J. Chem. Phys., 2010, 132, 154104.
- 5. Scalmani, G.; Frisch, M. J.; Map, V. J. Chem. Phys. 2010, 132, 114110.
- 6. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- 7. Hratchian, H. P.; Schlegel, H. B. *J. Chem. Phys.* 2004, *120*, 9918-24. (b) Hratchian, H. P.; Schlegel, H. B. *J. Chem. Theory and Comput.* 2005, *1*, 61-69.
- 8. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N.

Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.


Geometries and Cartesian coordinates of the important intermediates and transition states involved in the reaction

1a:

Charge = 0 Multiplicity = 1 C,0,-1.4324561999,-1.3761659964,0.2739640309 C,0,1.1291609109,-1.0224121951,0.1173541505 C,0,-0.4697306326,1.1052509912,-0.4783464239 C,0,-1.5540807816,-2.3866717428,1.2209728573 C,0,-2.291218897,-1.5093957456,-0.8118678304 C,0,2.173249077,-1.3463691454,0.9688217357 C,0,1.2893691671,-1.5243835687,-1.1730032144 C,0,-1.696729742,1.7581693872,-0.5358543556 C,0,0.5968329344,1.8728361312,-0.9312145127 C,0,-2.4659270894,-3.4279078523,1.1444022309 C,0,-3.2197698597,-2.534290895,-0.9356925108 C,0,3.2877606912,-2.0900779668,0.6011502057 C,0,2.3747594097,-2.2721435496,-1.5948145181 C,0,-1.8692016208,3.0558184131,-0.988827236 C,0,0.4796384477,3.1836176531,-1.3743848934 C,0,-3.312040826,-3.5009949049,0.050990996 C,0,3.388829182,-2.5623780792,-0.6938700982 C,0,-0.7653485853,3.7844774083,-1.4015757313 F,0,-0.7307554889,-2.3993621404,2.2971442486 F,0,-2.2669012129,-0.6256078186,-1.828685025 F,0,2.1870093089,-0.9028155111,2.2596149979 F,0,0.3445914352,-1.2616940549,-2.1010245695 F.0,-2.7952465066,1.1672852273,-0.012969234 F.0,1.8677135467,1.40211017,-0.8620842711 F,0,-2.5278835411,-4.3596051753,2.1052341338 F,0,-4.0258952839,-2.5974447987,-2.0040566821 F,0,4.2595213958,-2.3447763227,1.4861349225 F,0,2.4575332578,-2.7158842203,-2.8548181367 F,0,-3.0713987801,3.6455347205,-0.9347593829 F,0,1.5712357862,3.8922137112,-1.6990504608 F,0,-4.2019697542,-4.4932169354,-0.0527834782 F,0,4.4493691301,-3.2797492835,-1.0752029156 F,0,-0.8928934287,5.0677437041,-1.7557110089 C, 0, 0.1939829883, 1.7574439619, 2.1155510352C,0,-0.5686227342,2.927798894,2.1006425907 C,0,0.0556724106,4.1557383578,1.9391802025 C,0,1.4480151853,4.2372663772,1.8270854455 C,0,2.1981424815,3.0793061234,1.9037805622 N,0,1.5366201562,1.9044723592,2.0485547384 H,0,-0.5413447593,5.0618905421,1.8891175295 H,0,-1.6475934544,2.849042738,2.1778361683 H,0,1.9505162535,5.1869937197,1.6866321143 C,0,-0.3767818158,0.3894591984,2.0384003155 H,0,0.1001411176,-0.2716273969,2.7616327625 H,0,-1.4365855944,0.4608435492,2.3003437024 C,0,3.6880020698,3.0110888874,1.8310683713 H,0,3.9965584277,2.3975450589,0.9782037114 H,0,4.1041293885,4.0116004946,1.7139391191 H,0,4.0945127893,2.561070981,2.7419455596 H,0,2.099445901,1.0547564828,2.099599349 B,0,-0.2745012611,-0.2276119432,0.467937702

$B(C_6F_5)_3$:

0

6

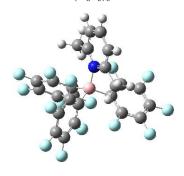
5	0	0.000000	0.000000	0.001103
6	0	0.000296	1.568753	0.000918
6	0	-1.358727	-0.784120	0.000918
6	0	1.358432	-0.784632	0.000918
6	0	0.982625	2.312949	-0.653646
6	0	0.994445	3.697118	-0.672743
6	0	0.000000	4.391442	-0.000535
6	0	-0.994439	3.697551	0.672273
6	0	-0.982372	2.313427	0.654601
6	0	-2.494385	-0.305496	-0.653646
6	0	-3.699021	-0.987344	-0.672743
6	0	-3.803100	-2.195721	-0.000535
6	0	-2.704954	-2.709985	0.672273

-1.512301 -2.007473

0.654601

6	0	1.511760	-2.007453	-0.653646	
6	0	2.704576	-2.709774	-0.672743	
6	0	3.803100	-2.195721	-0.000535	
6	0	3.699393	-0.987567	0.672273	
6	0	2.494673	-0.305955	0.654601	
9	0	1.967910	1.693199	-1.319681	
9	0	1.948763	4.365429	-1.324349	
9	0	-0.000164	5.720831	-0.001116	
9	0	-1.948755	4.366456	1.323271	
9	0	-1.967579	1.694074	1.321092	
9	0	-2.450309	0.857661	-1.319681	
9	0	-4.754954	-0.495037	-1.324349	
9	0	-4.954303	-2.860558	-0.001116	
9	0	-2.807084	-3.870899	1.323271	
9	0	-0.483321	-2.551011	1.321092	
9	0	0.482398	-2.550860	-1.319681	
9	0	2.806191	-3.870392	-1.324349	
9	0	4.954467	-2.860273	-0.001116	
9	0	4.755839	-0.495557	1.323271	
9	0	2.450901	0.856937	1.321092	

$[HB(C_6F_5)_3]^-$:


Charge =	-1 Multiplicity = 1
**	

Н		0.019406000000
-0.009625000000	2.078702000000	
В		0.029625000000
-0.005359000000	0.871573000000	
C		-0.932135000000
-1.236731000000	0.388261000000	
C		-0.583972000000
1.437467000000	0.406891000000	
C		1.586629000000
-0.208983000000	0.415722000000	
C		-1.125051000000
-2.348940000000	1.197638000000	
C		-1.957233000000
-3.410386000000	0.866407000000	
C		-2.641168000000

-3.384380000000	-0.336473000000	2.477201000000
C -2.303185000000	-1.186879000000	-2.475201000000
С		-1.631727000000
-1.267978000000	-0.811847000000	
C	1.146022000000	-1.605154000000
2.021074000000 C	1.146822000000	-2.182778000000
3.245164000000	0.839923000000	2.102770000000
C		-1.733911000000
3.944526000000	-0.267410000000	
C	1.04607600000	-0.725856000000
3.402326000000 C	-1.046876000000	-0.183709000000
2.172412000000	-0.701027000000	-0.163707000000
С		2.617527000000
0.270598000000	1.214740000000	
C		3.964907000000
0.113543000000	0.918148000000	4 220295000000
C -0.554372000000	-0.238161000000	4.329385000000
C	-0.236101000000	3.341194000000
-1.041505000000	-1.077523000000	
C		2.008719000000
-0.855512000000	-0.739229000000	0.400027000000
F -2.450005000000	2.379049000000	-0.480827000000
-2.430003000000 F	2.379049000000	-2.105595000000
-4.456177000000	1.694065000000	
F		-3.450850000000
-4.395210000000	-0.677582000000	
F	2.250006000000	-3.126316000000
-2.275364000000 F	-2.359906000000	-1.498903000000
-0.260720000000	-1.699432000000	1.17070300000
F		-2.101101000000
1.384303000000	2.228890000000	
F	4. 5050 40000000	-3.165151000000
3.756752000000 F	1.597268000000	-2.272797000000
5.128802000000	-0.585291000000	-2.212191000000
F		-0.294675000000
4.066946000000	-2.129906000000	
F		0.767744000000

1.693709000000	-1.529232000000	
F		2.337193000000
0.944676000000	2.350153000000	
F		4.9136150000000
0.596936000000	1.734740000000	
F		5.622027000000
-0.721877000000	-0.545916000000	
F		3.684599000000
-1.677532000000	-2.208066000000	
F		1.105445000000
-1.327951000000	-1.623425000000	

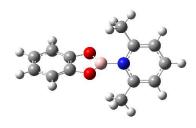
Lutidine. $B(C_6F_5)_3$:

Charge = 0 Multiplicity = 1 C,0,3.6609157244,0.2153832526,-0.5170215461 C,0,3.8309540831,-1.1364472541,-0.2788317195 C,0,2.7413173827,-1.889234647,0.1315782861 C,0,1.5145978375,-1.2690303149,0.2887872337 C,0,1.276994976,0.0800470423,0.0353286864 C,0,2.4074743471,0.7895511636,-0.347880758 C,0,-1.4762752122,-0.0985292392,-0.3028347688 C,0,-1.4209085125,-1.1011908605,-1.2637841869 C,0,-2.77130282,0.3004627061,0.0109499435 C,0,-2.54170003,-1.6637851687,-1.8613407931 C,0,-3.9207367124,-0.2251957576,-0.5527884375 C,0,-3.8039882623,-1.2255647433,-1.5042884863 C,0,-0.1646410765,0.4674881492,2.047528276 C,0,-0.9180914885,-0.4398826191,2.7807528825 C,0,0.8482169818,1.0883228981,2.7745103636 C,0,-0.7197638385,-0.679076359,4.1365456725 C,0,1.0763001645,0.8945189948,4.12368989C,0,0.2796663711,-0.0062108943,4.8155075743 F,0,5.0272783081,-1.7075478517,-0.436804208 F,0,2.3416868987,2.117544071,-0.5959722672 F,0,4.7024660021,0.9627094755,-0.9020592526 F,0,2.8857964336,-3.1961851742,0.3786092673

F,0,0.499150669,-2.0475691425,0.7221894806 F.0.-0.2394382528.-1.5616689953.-1.7280831488 F,0,-2.9558730186,1.2595463817,0.9465973591 F,0,-5.1289938891,0.2128926528,-0.1821363261 F,0,-2.4036503761,-2.6108217382,-2.7967320227 F,0,-4.8904158948,-1.7527662391,-2.071738509 F,0,1.641901015,1.9918578043,2.1520718161 F,0,2.0419864747,1.5648062924,4.7621547994 F.O.-1.4826341181,-1.5667640185,4.7842036266 F,0,-1.9061864549,-1.1541512191,2.209351424 F,0,0.4797205073,-0.2216412084,6.1172182171 B,0,-0.2173796533,0.675032726,0.4189191327 C,0,-0.7062055264,3.2844349085,0.7762837824 C,0,-0.6567042408,4.5978413732,0.3114882459 N,0,-0.3813182709,2.2434751856,-0.0537654454 C,0,-0.3392942979,4.8828628555,-1.0028359388 H,0,-0.8967886583,5.3918279966,1.009563339 C,0,-0.1575933653,2.5120638798,-1.3819908857 C,0,-0.1235997162,3.8164401541,-1.857731268 H,0,0.0768557414,3.9725840426,-2.9111179944 C,0,-1.1744243874,3.1529880569,2.2052601985 H,0,-1.9002393555,3.9514990139,2.3729662789 H,0,-1.6566673857,2.2136211564,2.4404968736 C,0,-0.0021022562,1.436794552,-2.4230183662 H,0,0.5008079889,0.5331190848,-2.0980500251 H,0,-0.9943811041,1.1574388845,-2.7960049042 H,0,0.5605920324,1.8507721505,-3.2614191529 H,0,-0.2926057617,5.9069533687,-1.3590197502 H,0,-0.3488525425,3.3234987908,2.902501282

catBH:

Charge = 0 Multiplicity = 1 C,0,-0.6986832142,0.,2.0849996218 C,0,-1.4309124101,0.,0.8927311254 C,0,-0.6953692333,0.,-0.275809656 C,0,0.6953692333,0.,-0.275809656 C,0,1.4309124101,0.,0.8927311254 C,0,0.6986832142,0.,2.0849996218 H,0,-1.2312211945,0.,3.0304616624 H,0,-2.5155868577,0.,0.8803116673 H,0,2.5155868577,0.,0.8803116673 H,0,1.2312211945,0.,3.0304616624 O,0,-1.1424486603,0.,-1.5789243183 O,0,1.1424486603,0.,-1.5789243183 B,0,0.,0.,-2.3585110964 H,0,0.,0.,-3.5373571991


[LutBCat][HB(C_6F_5)₃]:

Charge = 0 Multiplicity = 1 C,0,1.4002298563,-1.1081368053,1.1745038 C,0,0.9069382246,-1.469127356,-1.3916686487 C,0,-1.094245402,-0.4548648542,0.1972666709 C,0,2.7249983076,-0.7010814372,1.2811847205 C,0,0.9702567683,-1.9510495601,2.1900157457 C,0,1.6278059055,-0.9778133542,-2.4699775921 C,0,0.5804006165,-2.8160031443,-1.4736113356 C,0,-1.5903156164,0.0277105664,1.4092251632 C,0,-2.0692042978,-0.6071485121,-0.7819084266 C,0,3.5591587296,-1.0495856653,2.3327467301 C,0,1.7687129574,-2.3353179279,3.2581458499 C,0,1.9782740084,-1.7493367243,-3.5707300969 C,0,0.9078481702,-3.6277746719,-2.5466035304 C,0,-2.9166563278,0.3652242281,1.6299377129 C,0,-3.409814476,-0.281734491,-0.6085789314 C,0,3.0741945178,-1.8769381174,3.3321483848 C,0,1.6163303251,-3.0847432468,-3.6087159513 C,0,-3.8385682946,0.2203909159,0.6055095755 F,0,3.262090273,0.0877883379,0.3275824845 F.0,-0.2964430485,-2.4173351325,2.1982674308 F.0,2.0189801082,0.3182991942,-2.512647808 F,0,-0.123403003,-3.3787956032,-0.467190005 F,0,-0.759172934,0.2290157849,2.4528829718 F,0,-1.7428978274,-1.0282328977,-2.0270350062 F,0,4.8187342763,-0.5917213489,2.3948072061 F,0,1.2904495296,-3.1376031652,4.2209512564 F,0,2.6581109681,-1.2133121852,-4.5956845787 F,0,0.5528882607,-4.91989196,-2.5760000754

F,0,-3.3090033194,0.8897844287,2.8018202041 F,0,-4.2759353196,-0.3829008898,-1.6297800421 F,0,3.859199138,-2.2322855737,4.3568527812 F,0,1.9470488047,-3.8453912122,-4.6585346114 F,0,-5.1082229082,0.6145333339,0.771136226 C,0,1.3670725871,2.6427497551,1.286865605 C,0,1.8664346009,3.1101397717,0.0763860202 C,0,2.1837569118,2.3621195373,2.3639640954 C,0,3.2100127225,3.3444672434,-0.1302111351 C,0,3.5512800905,2.5874569274,2.1671445993 H,0,1.7849728809,1.9767002809,3.2965724656 C,0,4.0500357622,3.0707886003,0.9539214529 H,0,3.5856132805,3.7042167161,-1.0818924399 H,0,4.2412936153,2.3729248061,2.9767169994 H,0,5.1177140792,3.2284680441,0.8434244757 C,0,-2.7043577023,3.3587201881,0.0506127723 C,0,-3.9826405901,3.3563579461,-0.4848056763 C,0,-4.2042599022,2.8507441075,-1.7607243497 C,0,-3.1352529835,2.3578886581,-2.498060449 C,0,-1.8583714493,2.3554067564,-1.9587716589 N,0,-1.6672350689,2.8493634485,-0.691597262 H,0,-5.2073766871,2.8339259786,-2.1755301584 H,0,-4.7962579521,3.7481663365,0.1139924864 H,0,-3.2772998999,1.9463182347,-3.4903349651 C,0,-2.44438146,3.9168700028,1.4162547397 H,0,-1.6556810058,4.6754033416,1.395478168 H,0,-3.3604787728,4.3775738702,1.7856012847 C,0,-0.7036060371,1.7945444856,-2.7266847672 H,0,-0.0983237169,1.1266838133,-2.1113138139 H,0,-1.0873751171,1.2398568021,-3.5832478027 H,0,-0.053003301,2.5951881894,-3.090696309 B,0,0.5146480699,-0.5756403555,-0.0863362624 B,0,-0.2824895811,2.8540629543,-0.1094919091 0,0,-0.0049484412,2.5064031492,1.1800346624 O,0,0.8154379969,3.2655732829,-0.8115373332 H,0,-2.1408971633,3.1332142648,2.1148847525 H,0,0.8778952629,0.5579969089,-0.3098025621

[LutBcat]⁺:

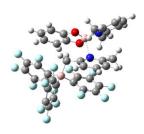
Charge = 1 Multiplicity = 1C,0,2.3954914849,2.6777195681,0.3427490476 C,0,2.330304772,3.5765188696,-0.716126942 C,0,3.5899209973,2.3010063325,0.9209824508 C,0,3.4552976562,4.15696697,-1.2642105828 C,0,4.7401607648,2.8808695853,0.3759208538 H,0,3.6279744528,1.5964252934,1.7443499632 C,0,4.6745536337,3.785239376,-0.688349411 H,0,3.3911849183,4.8592645016,-2.087912337 H,0,5.7073733616,2.6206704118,0.7926860632 H,0,5.5920278074,4.2109912432,-1.0806159696 C,0,-1.8868183916,3.284558829,0.8366401274 C,0,-3.2663663597,3.167688838,0.8222099591 C,0,-3.897810891,2.5770413196,-0.2677849436 C,0,-3.1452544111,2.1080759587,-1.3398894272 C,0,-1.7665659135,2.2336914962,-1.3186462368 N,0,-1.1763624418,2.8162817748,-0.2325942867 H,0,-4.979059604,2.4819811893,-0.2817654617 H,0,-3.831721559,3.5423815094,1.6672577914 H,0,-3.6147003802,1.6424268385,-2.1983284092 C,0,-1.1374487104,3.900880167,1.9760490407 H,0,-0.4359854828,4.6683319208,1.62920144 H,0,-1.8443348139,4.3695804308,2.6607269344 C,0,-0.8921369163,1.7601656483,-2.4370362326 H,0,-0.0768255208,1.125877161,-2.0705673034 H,0,-1.4886163446,1.177093302,-3.1387416389 H,0,-0.4570417691,2.6094454644,-2.9726497601 B,0,0.3150854086,2.9472650277,-0.2132838036 O,0,1.109086372,2.2703501354,0.6656382888 O,0,1.0013480191,3.7541775135,-1.0729945316 H,0,-0.5749561389,3.139309324,2.5247563176

TS1:

Charge = 0 Multiplicity = 1 C,0,-2.7572184194,-0.7400424489,0.7711285815 C,0,-2.5683661397,-0.4504746249,2.1194283827 C,0,-3.0350034111,-2.015718868,0.323206106 C,0,-2.6477328997,-1.4159191405,3.1026359991 C,0,-3.1119050917,-3.0079403966,1.307998051 H,0,-3.1777571623,-2.2314277495,-0.7299136251 C,0,-2.9237324323,-2.716216431,2.662665156 H,0,-2.4973515273,-1.1749665945,4.1499898691 H,0,-3.3249960551,-4.0287918473,1.00941086 H,0,-2.9961333197,-3.515177501,3.3929617701 C,0,-0.4750843631,2.9375701922,0.5109568609 C,0,-0.0185108514,4.2798833425,0.4350877329 C,0,-0.9093277224,5.3202611453,0.476661406 C,0,-2.2989373836,5.0812564409,0.5991708421 C,0,-2.7470240918,3.7925010914,0.6969767891 N,0,-1.8367124928,2.7576967638,0.6626412725 H,0,-0.5490526484,6.3420570484,0.4049338681 H,0,1.0473186042,4.4477633658,0.3273363602 H,0,-3.0113884814,5.8965814746,0.6190289225 C,0,0.3810840883,1.8053239093,0.5449755203 H,0,1.4061488533,2.0169897888,0.2454290409 H,0,-0.0096094004,0.8939013425,0.0866465553 C,0,-4.1885053121,3.4129230007,0.8361546686 H,0,-4.3564111456,2.8179636926,1.7413206857 H,0,-4.8046007821,4.3102859237,0.9002044928 H,0,-4.5193031228,2.8263554291,-0.0277872008 B,0,-2.2623291323,1.3712221313,0.9653130324 O,0,-2.5862402347,0.4195512855,0.0346824952 0,0,-2.2711281555,0.8925622848,2.2510446104 C,0,0.336228868,1.6401281319,4.14724264 C,0,0.3391539061,1.1016519234,5.4304410607 C,0,0.5670250771,-0.2630794063,5.590127075 C,0,0.7836389228,-1.0658897643,4.473908044 C,0,0.7696589542,-0.4843293231,3.2085585621 N,0,0.553966754,0.8372055645,3.0919195471 H,0,0.5751556518,-0.700124987,6.583907968

H,0,0.1666247054,1.7491778096,6.2829860763

H,0,0.9593824374,-2.1316024436,4.57009546 C,0,0.0821376135,3.0909638208,3.8641590176 H,0,0.067405542,3.6612766307,4.7938667425 H,0,0.8551897082,3.4992812585,3.2065163814 H,0,-0.8872533587,3.2163884947,3.3667578003 C,0,0.968606944,-1.2680863719,1.945532181 H,0,1.2353514434,-2.2994327594,2.1800285304 H,0,0.0473894377,-1.2762936709,1.3515989749 H,0,1.7597857924,-0.8248648716,1.3336699872 H,0,0.4929838335,1.3365889129,1.9455818456


2.

Charge = 0 Multiplicity = 1 C,0,-1.2603744373,-1.155755068,-0.4131148268 C.0,-0.6535813441,1.3251767495,-0.1530506679 C,0,1.2617682189,-0.5079720026,0.5551588221 C,0,-2.2371463713,-1.1199005362,-1.4074919137 C,0,-1.6024838412,-1.961451362,0.6719971521 C,0,-0.9993870386,2.2999046849,-1.0802003001 C,0,-1.0486451531,1.6178759621,1.1494706717 C,0,1.7194028929,-1.8091873215,0.7518999558 C,0,2.1443929185,0.4614075871,1.0176360826 C,0,-3.4184706571,-1.8469656642,-1.3800364796 C,0,-2.7524018518,-2.7378332235,0.7265833029 C,0,-1.6581831256,3.4795230477,-0.7525525287 C,0,-1.702011482,2.7783365063,1.5267825087 C,0,2.9384466398,-2.1370406199,1.3221674885 C,0,3.3747176164,0.1860597938,1.6008089373 C,0,-3.6684255192,-2.6871978208,-0.3105091971 C,0,-2.0113854373,3.7238828436,0.5613085065 C,0,3.7838433319,-1.1273478761,1.7482822356 F,0,-2.08126244,-0.310755702,-2.4821966709 F,0,-0.824772878,-2.0166125686,1.7713027853 F,0,-0.7129100262,2.1534551561,-2.3948297087 F,0,-0.7897269456,0.7299097517,2.1346828405 F.0,1.0136289599,-2.864825368,0.2774308977 F,0,1.8775955073,1.7742606158,0.8300241519 F,0,-4.3042440445,-1.7531247031,-2.3791623316

F,0,-2.9913460739,-3.5231062392,1.785361643 F.O.-1.9578111598.4.376849185.-1.701704044 F,0,-2.0427501428,2.994102989,2.8043331809 F,0,3.3335229595,-3.4172941205,1.3952720017 F,0,4.1926528913,1.1816044778,1.9663693236 F,0,-4.7750090886,-3.4350531086,-0.2802159831 F,0,-2.6492565847,4.8502064233,0.8957559428 F,0,4.9907573361,-1.4148697204,2.2469448471 C,0,-1.3824928865,-4.1237985185,-2.5969951319 C,0,-1.4568833808,-3.2377939896,-3.6669491611 C,0,-2.3837928573,-5.0320118492,-2.3195472923 C,0,-2.5314190102,-3.2088971475,-4.5315947151 C,0,-3.4825995434,-5.0131510185,-3.1864125441 H,0,-2.3229351702,-5.7068817364,-1.4722430646 C,0,-3.5522199218,-4.1278597493,-4.2663986075 H,0,-2.5810545115,-2.5041133208,-5.3544096449 H,0,-4.3011041728,-5.7038701536,-3.012983155 H,0,-4.424454172,-4.1437566276,-4.9113604326 C,0,1.9576025902,-1.0156243648,-2.091885321 C,0,3.2589322737,-0.5582163723,-1.8711490818 C,0,4.3082138647,-1.4527423323,-1.7702088071 C,0,4.0711328591,-2.8196294566,-1.932610351 C,0,2.7963248967,-3.2676305515,-2.2130068474 N,0,1.7673421429,-2.3577470586,-2.2829221539 H,0,5.3126584629,-1.0949835404,-1.5637174349 H,0,3.4137227004,0.5072825277,-1.7433599258 H,0,4.8737413146,-3.5440711008,-1.8594589752 C,0,0.8002845211,-0.0916720904,-1.996577896 H,0,1.2120220694,0.9125293727,-2.1127309256 H,0,0.0947093137,-0.2462634776,-2.81229307 C,0,2.5059826863,-4.7199998146,-2.4363471383 H,0,1.8963621485,-4.8810340594,-3.3310388336 H,0,3.4489497212,-5.2521218001,-2.5627486078 H,0,1.9744866192,-5.1424917817,-1.5786424454 B,0,0.0350920032,-0.133123776,-0.483373398 B,0,0.3948647505,-2.87264438,-2.5852648107 O,0,-0.2104126374,-3.8896602747,-1.9027743243 0,0,-0.3253249741,-2.4409917761,-3.6668664294

TS2:

Charge = 0 Multiplicity = 1 C,0,2.0725601719,-1.1943523841,-0.3567836115 C,0,2.6165634405,1.1958069247,0.5302373297 C,0,0.5635404248,0.9190628094,-1.2833807811 C,0,2.4142829848,-2.0737503948,0.665147802 C,0,2.3914909503,-1.6596847018,-1.6283572301 C,0,2.9183160047,1.506978625,1.8488990914 C,0,3.5538204699,1.6680885091,-0.3848611181 C,0,-0.3459258377,0.1426992733,-1.9945898442 C,0,0.3956570766,2.2855381729,-1.4701578915 C,0,2.9654768613,-3.3306785689,0.4667908088 C,0,2.9444387417,-2.9082901198,-1.8789177318 C,0,4.024313319,2.255517876,2.2377315402 C,0,4.6715890509,2.4130610411,-0.0517956012 C,0,-1.3597900842,0.651944935,-2.7872594316 C,0,-0.6082267988,2.8470307978,-2.2502551782 C,0,3.2277174862,-3.7570739729,-0.8227234521 C,0,4.9097959957,2.7142420087,1.2807391819 C,0,-1.4989608799,2.0229156447,-2.9135475922 F,0,2.2141889905,-1.7231489113,1.9579199191 F,0,2.1499476414,-0.907942272,-2.7225551242 F,0,2.1247670067,1.0982010055,2.8701795414 F,0,3.3760429995,1.4116765154,-1.6994456168 F.0,-0.3286448262,-1.2030931391,-1.8654365852 F,0,1.1831018192,3.1766289344,-0.8207463875 F,0,3.2202063474,-4.1420170403,1.5044394293 F,0,3.1986958903,-3.3036824006,-3.1349855168 F,0,4.2313271409,2.5369370912,3.5327559411 F,0,5.5206107082,2.8457777754,-0.9942152323 F.0,-2.2555830709,-0.1642314774,-3.3701335661 F.0,-0.7630062797,4.1791616246,-2.3151192089 F,0,3.7385864436,-4.974099457,-1.0457370787 F,0,5.9813271854,3.4338208442,1.6319985511 F,0,-2.5126234954,2.5409510043,-3.6222180694 C,0,-1.7365847534,-2.7755590334,0.1949045302 C,0,-1.6319372106,-2.610714692,1.5709960578 C,0,-1.0051430975,-3.7248488032,-0.4909774287 C,0,-0.7790976596,-3.3738660429,2.3433729041

```
C,0,-0.1470215611,-4.5184315821,0.2808734964
H,0,-1.0834685034,-3.8332862194,-1.5672765497
C,0,-0.0334430224,-4.3451189154,1.6636364004
```

H,0,-0.6835859244,-3.2129675366,3.4121557197

H,0,0.4519080344,-5.2791161037,-0.2108288043

H,0,0.6580889367,-4.9663094545,2.2234239183

C,0,-0.8290509992,1.1542480399,1.1135206609

C,0,-0.4734776907,2.3658965291,1.7193715165

C,0,-1.2903258311,3.4759453305,1.5611653407

C, 0, -2.4209993032, 3.3689650002, 0.7583524458

C,0,-2.7410224666,2.1282271515,0.2058434601

N,0,-1.9994234752,1.0273888497,0.4418077968

H,0,-1.0258648317,4.4248748396,2.0193832178

H,0,0.4514442313,2.4303787134,2.2790396978

H,0,-3.0419698263,4.2313466095,0.5357804391

C,0,0.1271135384,0.0085259175,1.0774833804

H,0,0.4883487974,-0.2369409045,2.0757671966

H,0,-0.3929416695,-0.8572253696,0.6751053589

C,0,-3.9185734897,2.0288520824,-0.7278258792

H,0,-4.870302602,2.0330029211,-0.1841974878

H,0,-3.9287514587,2.901575555,-1.3874303852

H,0,-3.8608533446,1.1316613058,-1.3479431337

B,0,1.3759410775,0.2594421805,-0.0081583742

B, 0, -3.0431363608, -1.1151892111, 0.7919882537

O, 0, -2.6236048685, -1.8451053931, -0.3025268221

O,0,-2.4493313367,-1.5720565984,1.9612242311

C,0,-5.3789058756,-0.7396375595,-0.071119097

C,0,-6.6745574934,-0.2727329681,0.1024188703

C,0,-7.0197787775,0.4512496501,1.2339388129

C, 0, -6.0466878627, 0.7064080824, 2.1880756076

C,0,-4.7547018501,0.2249028188,2.0263092158

N, 0, -4.4336456429, -0.4942662175, 0.8982297135

H, 0, -8.0321424408, 0.8196017378, 1.3657228886

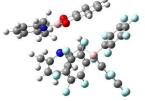
H,0,-7.4027579735,-0.4778402937,-0.6728804963

H,0,-6.2747148767,1.2767256592,3.0807709793

C, 0, -5.0557538698, -1.4932961163, -1.3265994152

H,0,-4.8158042052,-2.5375468012,-1.1127443853

H,0,-5.931808343,-1.461969987,-1.9742845297


H,0,-4.2057249615,-1.0616660258,-1.8573294114

C,0,-3.7569929116,0.4938225196,3.1141638983

H,0,-3.6803485036,-0.3760212126,3.7732315733

H,0,-2.7584842007,0.7151202623,2.7418856537

H,0,-4.1136410945,1.3419212564,3.6999176464



Charge = 0 Multiplicity = 1 C,0,1.8886017074,1.2655754746,0.3586617907 C,0,2.6098734033,-1.0156208335,-0.6210646112 C,0,0.5765762623,-1.0025011948,1.2267782696 C,0,2.2266584434,2.164129891,-0.6477112033 C,0,2.1794452258,1.7205697683,1.6405179399 C,0,2.9192109731,-1.2784842997,-1.948303638 C,0,3.6112621997,-1.3914934615,0.2709476592 C,0,-0.3932804148,-0.3528532069,1.9819999343 C,0,0.5583798455,-2.3844254305,1.368050531 C,0,2.7680552261,3.4208454056,-0.4272255744 C,0,2.7110790535,2.9739424817,1.9135217348 C,0,4.0933454273,-1.897866611,-2.3644407865 C,0,4.7959485029,-2.0087585252,-0.0890900043 C,0,-1.3240623909,-0.992823677,2.7813884574 C,0,-0.3629043366,-3.0761793153,2.1448019814 C,0,3.0042893526,3.835645891,0.8711000601 C,0,5.0406806166,-2.2685108091,-1.4292674668 C,0,-1.3188485645,-2.3745796058,2.8563627029 F,0,2.0353933907,1.8268181571,-1.9456521379 F,0,1.950662216,0.9473918503,2.7225008631 F,0,2.0713415057,-0.9457527441,-2.953339292 F,0,3.4342877292,-1.1631213487,1.5915307546 F.0.-0.5352694593,0.9889992284,1.8843022777 F,0,1.4201214036,-3.1651991182,0.672079433 F,0,3.0222031898,4.251668082,-1.4499017985 F,0,2.9383077014,3.3597982237,3.1777057523 F,0,4.3086284164,-2.1367929591,-3.6668617147 F,0,5.7049933419,-2.3540578567,0.8332151885 F.0,-2.2861143493,-0.2954226336,3.4120766378 F.O.-0.3724617305,-4.4190598528,2.1639589495 F,0,3.4840816918,5.0613318184,1.1160075332 F,0,6.1780641722,-2.8622366754,-1.8080894946 F,0,-2.2557650307,-3.0214848847,3.565116495 C,0,-1.8398640407,2.8366156223,-0.043927343 C,0,-1.7882642158,2.8397090519,-1.4318427515 C,0,-1.0595752246,3.6784352732,0.7257341661

C,0,-0.9440737511,3.6700352956,-2.1420248177

```
C,0,-0.2170018472,4.543675274,0.0205605462
```

- H.O.-1.1007074643.3.6612000378.1.8091490745
- C,0,-0.1559499125,4.5372620165,-1.3778383594
- H,0,-0.8988819899,3.6459284204,-3.2254979909
- H,0,0.4138140043,5.2318337745,0.5753841051
- H,0,0.5288117177,5.2107099152,-1.882617571
- C,0,-0.8217525872,-1.2955190408,-1.1498602496
- C,0,-0.4001105933,-2.4513600091,-1.8197670004
- C,0,-1.1387191085,-3.620525146,-1.6848282935
- C,0,-2.2675529389,-3.6207955157,-0.8709068729
- C,0,-2.6443431605,-2.424744665,-0.2530944153
- N,0,-1.9578285074,-1.2855912314,-0.4216156526
- H,0,-0.8215170981,-4.5307900476,-2.1864703636
- H,0,0.5065174705,-2.430625466,-2.4122227457
- H,0,-2.8400251267,-4.5270525348,-0.6961411489
- C,0,0.0194237902,-0.0580571814,-1.1097308904
- H, 0, 0.3594590841, 0.2240253295, -2.1063249622
- H, 0, -0.5998534513, 0.751317711, -0.7163818824
- C,0,-3.842763857,-2.3859071209,0.6582082677
- H,0,-4.7764151528,-2.384037517,0.0839311935
- H,0,-3.8645953719,-3.2741244817,1.2970803616
- H,0,-3.8179861988,-1.4948837238,1.2918744803
- B,0,1.2909640451,-0.2177879647,-0.0355786314
- B, 0, -3.2590793814, 1.3571762713, -0.7917201536
- O, 0, -2.7650030417, 1.8949208407, 0.3643501169
- O, 0, -2.6819346349, 1.9023489626, -1.9129354197
- C, 0, -5.4374412365, 0.5463550039, 0.1027706528
- C,0,-6.6343524479,-0.133270316,-0.0656124158
- C,0,-6.8635327769,-0.8854558734,-1.2090536488
- C, 0, -5.8710198346, -0.9649818484, -2.1755328751
- C, 0, -4.6811200593, -0.2687299322, -2.0215795288
- N,0,-4.4834491198,0.4872165483,-0.8888067703
- H, 0, -7.8016881415, -1.4157127268, -1.3388937743
- H,0,-7.3790903634,-0.0670290217,0.7182962027
- H, 0, -6.0048937806, -1.560801829, -3.0708375708
- C,0,-5.2060237566,1.3235260881,1.3620779202
- H,0,-5.0400847316,2.384265678,1.1590774305
- H,0,-6.0879452578,1.2228678625,1.9940602711
- H,0,-4.3360344314,0.9461817346,1.9043415508
- C, 0, -3.6490059312, -0.3507320662, -3.104905392
- H, 0, -3.7081510276, 0.5274034998, -3.7546515275
- H,0,-2.6332602569,-0.415648,-2.7165702284
- H,0,-3.8580473617,-1.2379317247,-3.7038032559

Charge = -1 Multiplicity = 1C,0,-1.7839859637,-0.9190155381,-0.4171427901 C,0,-0.557069271,1.3397701359,-0.0255103729 C,0,0.8412174204,-0.9776327827,0.4250438061 C,0,-2.7571460768,-0.5763512087,-1.3501361667 C,0,-2.2218575764,-1.8067933247,0.5594469164 C,0,-0.5778650567,2.473181498,-0.8308489062 C,0,-0.8510544194,1.5882836837,1.3118605892 C,0,1.0485897875,-2.3433684557,0.2587521464 C,0,1.8850445406,-0.3328104823,1.0791019939C,0,-4.045967782,-1.0889024479,-1.3614158895 C,0,-3.5024627841,-2.3447026873,0.593343284 C,0,-0.8004763236,3.7554828332,-0.3384919073 C,0,-1.0856460781,2.8433114248,1.8473325153 C,0,2.1879935323,-3.0203855474,0.6612207594 C,0,3.0565022851,-0.9616975896,1.4827107674 C,0,-4.4226992402,-1.9866154581,-0.3766951335 C,0,-1.0554341779,3.9449217872,1.0072734372 C,0,3.2154408155,-2.3175735961,1.2679833588 F,0,-2.4733566921,0.3230625163,-2.3195788407 F,0,-1.4030520261,-2.2076981075,1.5516976548 F,0,-0.3951940577,2.4108669181,-2.1635074754 F.0.-0.8820207046,0.5526588905,2.1812276395 F,0,0.1440018308,-3.0822728516,-0.4278261057 F,0,1.8563703891,0.9998059693,1.3062158311 F,0,-4.9282595945,-0.7213560689,-2.3029328548 F,0,-3.8593751956,-3.2047709329,1.559008979 F,0,-0.7842019839,4.8149345722,-1.1637887092 F.0,-1.3409957982,3.0062620198,3.1552322833 F.0,2.3431200532,-4.3283999445,0.398224737 F,0,4.05959428,-0.2533055498,2.0273414334 F,0,-5.6614672761,-2.4971774257,-0.359823474 F,0,-1.2827068096,5.1747720089,1.4902621824 F,0,4.3613575865,-2.9319105199,1.5978636962 C,0,1.8130409385,-0.0695923364,-1.9933262512 C,0,2.7620907416,-1.0953059805,-2.1486332967 C,0,4.0942434766,-0.8344522415,-1.8596727907

C,0,4.4613139549,0.4469750597,-1.4500217217
C,0,3.470519662,1.4283345229,-1.3774692799
N,0,2.184673589,1.1698296289,-1.6436388849
H,0,4.8395269049,-1.6226726628,-1.9332548848
H,0,2.4387039956,-2.0878713514,-2.4492204375
H,0,5.4878715293,0.6830878059,-1.1876250914
C,0,0.3410888155,-0.3568946867,-2.0343782546
H,0,-0.1621902277,0.314076236,-2.729525993
H,0,0.1862088684,-1.3838959759,-2.3870733302
C,0,3.7760989005,2.8392030448,-0.9540822308
H,0,3.2887316309,3.0454191083,0.0047103035
H,0,4.8504928101,3.0079991087,-0.8447041226
H,0,3.3740620519,3.5464988725,-1.6852538529
B,0,-0.2981012743,-0.2151548909,-0.5003232652

HLutidine+

Charge = 1 Multiplicity = 1 C,0,1.2012667606,0.2620085635,0.

C,0,1.2086693225,-1.1247521552,0.

C,0,0.,-1.8159317823,0.

C,0,-1.2086693225,-1.1247521552,0.

C,0,-1.2012667606,0.2620085635,0.

N,0,0.,0.8819413095,0.

H,0,0.,-2.9014568778,0.

H,0,2.1590350028,-1.6460934899,0.

H,0,-2.1590350028,-1.6460934899,0.

C,0,2.4373575893,1.1010450984,0.

H,0,3.0383058982,0.8703442968,0.883679323

H,0,3.0383058982,0.8703442968,-0.883679323

H,0,2.2058834922,2.1678929889,0.

C,0,-2.4373575893,1.1010450984,0.

H,0,-3.0383058982,0.8703442968,-0.883679323

H,0,-3.0383058982,0.8703442968,0.883679323

H,0,-2.2058834922,2.1678929889,0.

H,0,0.,1.9023601519,0.

Charge = 0 Multiplicity = 1 C,0,-1.7970916739,-1.3781540107,0.4653811612 C,0,-2.7498717628,0.7864557642,-0.6069415236 C,0,-0.7019578253,1.0402711865,1.2148347899 C,0,-1.9924062511,-2.3749969121,-0.4848192384 C,0,-2.0460658292,-1.7876485812,1.7713536941 C,0,-3.0975917434,0.9119164099,-1.9444657701 C,0,-3.7629135999,1.1586706084,0.2732568377 C.0.0.3207545162.0.5063932217.1.9920409284 C,0,-0.7917328317,2.4251587236,1.2853572065 C,0,-2.3514340174,-3.6805222583,-0.1882428626 C,0,-2.3986338841,-3.0845485272,2.1200335008 C,0,-4.3190607369,1.4088293988,-2.3862431864 C,0,-4.9957189986,1.6540874884,-0.1126442312 C,0,1.2066208422,1.2600554812,2.7427781857 C,0,0.0779579109,3.2270808359,2.0153642736 C,0,-2.546099066,-4.043622787,1.132415162 C,0,-5.2774287011,1.7849772437,-1.4642822551 C,0,1.0938914994,2.6399280269,2.7470554488 F,0,-1.8329642598,-2.0977396356,-1.8006700735 F,0,-1.9385407258,-0.9218166357,2.8006125718 F,0,-2.2383449195,0.5572042228,-2.9329846923 F.0,-3.5491080395,1.0525244912,1.6028006052 F.0.0.5577797486,-0.8261303126,1.9745938679 F,0,-1.7165531575,3.0972771078,0.56084677 F,0,-2.4750141403,-4.5968582272,-1.1596060669 F,0,-2.590270155,-3.4196683349,3.4036577449 F,0,-4.5686412968,1.5291002079,-3.6982470169 F.0,-5.9146489793,2.0060271872,0.796039248 F.0,2.2284096351,0.6745783953,3.397420397 F,0,-0.0141536586,4.5643361231,1.9613615908 F,0,-2.8584295466,-5.304920462,1.4511908114 F.0.-6.4589930169,2.2634473377,-1.8669021596 F,0,1.9924759315,3.3924148346,3.3978561811 C,0,2.0545198698,-2.4595962523,-0.0144068366 C,0,2.0097412197,-2.3827220662,-1.4013856078

C,0,1.4286646843,-3.4655164072,0.6926394944

```
C,0,1.3390608947,-3.3049199608,-2.1760785142
C.0.0.760266341.-4.4219889628.-0.0802196415
H,0,1.4497684684,-3.5015442127,1.7762043053
C,0,0.7154725844,-4.3443860923,-1.4766853214
H,0,1.2919809142,-3.218312596,-3.2561312683
H,0,0.2513914657,-5.2400590051,0.4198925525
H,0,0.1728680619,-5.1010792174,-2.0329149033
C,0,0.6312863716,1.3451838401,-1.2222922337
C,0,0.0340071291,2.3947052833,-1.9348919917
C,0,0.5747440664,3.66879977,-1.8687824999
C,0,1.6872501955,3.8834688891,-1.0617278028
C,0,2.2715751675,2.7933880513,-0.4216846659
N,0,1.7946445383,1.5342632713,-0.5507129085
H,0,0.1091904223,4.4935790751,-2.4002015
H,0,-0.8688410934,2.20596558,-2.5013809768
H,0,2.0975697495,4.8771257985,-0.9129198361
C,0,-0.0751024502,0.0391316124,-1.0653840352
H,0,-0.3685391088,-0.376573122,-2.0296062712
H,0,0.5975878499,-0.6599113379,-0.574570121
C,0,3.4681950187,3.0377627553,0.4659163679
H,0,4.4175104937,3.0365506178,-0.091786816
H,0,3.3949915358,4.0318227088,0.9140971733
H,0,3.5217034193,2.3148047697,1.2869860134
B,0,-1.3651415037,0.1418327154,0.0006080236
B,0,3.1015003682,-0.6746281069,-0.6436082083
O,0,2.7794184479,-1.3749261439,0.4739857584
O,0,2.6964998656,-1.2423466088,-1.8129789015
C,0,5.3217032648,-0.3222953781,0.3221285126
C,0,6.3842325712,-1.0533779354,-0.1226701718
C,0,6.6756910586,-1.1042719976,-1.494395579
C,0,5.9376280874,-0.3793720821,-2.4466696915
C,0,4.8487199234,0.3442372571,-2.0644469412
N,0,4.4263738009,0.243015889,-0.6749796191
H,0,7.5336686137,-1.6827444854,-1.825964612
H,0,7.0250036697,-1.5420966529,0.6023734109
H,0,6.2405662987,-0.3618073461,-3.4868766768
C,0,4.991882983,-0.0385482488,1.7343531585
H,0,3.9287646819,0.1490175218,1.88838972
H,0,5.3232866073,-0.8657757983,2.3644733078
H,0,5.5483176186,0.8634466191,2.0291691898
C,0,4.0331330048,1.2170198887,-2.9348716063
H,0,2.976600075,0.9284140591,-2.9281899853
H,0,4.0948149781,2.2524240348,-2.5731986794
H,0,4.4178092576,1.1652144577,-3.9533553659
```