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1. General Methods

All the reagents and guest molecules involved in this research were commercially available and
used without further purification unless otherwise noted. Solvents were either employed as
purchased or dried prior to use by standard laboratory procedures. Thin-layer chromatography
(TLC) was carried out on 0.25 mm Yantai silica gel plates (60F-254). Column chromatography
was performed on silica gel 60 (Tsingdao 40 — 63 nm, 230 — 400 mesh). 'H, 13C NMR spectra
were recorded on a Bruker Avance-400 NMR spectrometer. All chemical shifts are reported in
ppm with residual solvents or TMS (tetramethylsilane) as the internal standards. The following
abbreviations were used for signal multiplicities: s, singlet; d, doublet; dd, doublet of doublet; m,
multiplet. Electrospray-ionization high-resolution mass spectrometry (ESI-HRMS) experiments
were conducted on an applied Q EXACTIVE mass spectrometry system. All the computations
were performed at the Semi-Empirical PM6 level of theory by using Spartan’14 (Wavefunction,
Inc.). The synthesis of diamine A! has been reported.

2. Synthetic Procedures
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To the solution of 1, 1'-Thiocarbonyldiimidazole (524 mg, 3.0 mmol) in DCM (200 mL), were
added compound A (527 mg, 1.0 mmol) and Hiinig’s base (258 mg, 2.0 mmol) were added
dropwise during 30 min. The resulting mixture was stirred at room temperature for 3 h. The
solvent was removed in vacuum, and the residue was purified by column chromatography (SiO,,
Hexane / DCM =1/ 1) to give the compound B as a yellow solid (560 mg, 92 %). 'H NMR (400
MHz, CDCl;, 25 °C): 8 [ppm] = 8.59 (d, J = 9.4 Hz, 2H), 7.72 (d, J = 9.2 Hz, 2H), 7.37 (d, J =
9.4 Hz, 2H), 7.30 (d, J = 9.2 Hz, 2H), 6.31 (s, 1H), 5.35 (s, 1H), 5.05 (dd, J = 13.0, 4.1 Hz, 2H),

1Z. He, G. Ye and W. Jiang, Chem. —Eur. J. 2015, 21, 3005-3012.
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4.24-4.09 (m, 4H), 2.49 (s, 2H), 1.92-1.81 (m, 4H), 1.64-1.50 (m, 4H), 1.03 (t, J = 7.4 Hz, 6H).
13C NMR (100 MHz, CDCl5, 25 °C): & [ppm] = 152.9, 148.8, 128.7, 126.5, 125.2, 122.6, 120.3,
119.0, 116.0, 114.2, 91.3, 69.3, 39.2, 31.5, 26.9, 23.0, 19.3, 13.9.
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'H NMR spectrum (400 MHz, CDCls, 25 °C) of compound B.
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BC NMR spectrum (100 MHz, CDCls, 25 °C) of compound B.
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The solutions of compounds A (483 mg, 0.92 mmol; in 60 mL DCM) and B (560 mg, 0.92 mmol;
in 60 mL DCM) in two separate syringes were added dropwise via a double-channel syring pump

to the solution of Hiinig’s base (545 mg, 5.0 mmol) in DCM (400 mL) during the course of 10 h.
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The resulting mixture was stirred overnight at reflux. After removing the solvent in vacuum, the
residue was subjected to column chromatography (SiO,, Hexane / DCM = 1 / 4) to afford the two
isomers of macrocycle 1b.

1b-anti. White solid, yield (84 mg, 8 %), m.p. > 320 °C (Decomposed); 'H NMR (400 MHz,
CDCls, 25 °C): 8 [ppm] = 8.39 (d, J = 9.4 Hz, 2H), 7.53 (d, J = 9.2 Hz, 2H), 7.19 (d, J = 9.4 Hz,
2H), 7.06 (d, /= 9.2 Hz, 2H), 6.22 (s, 1H), 5.25 (s, 1H), 5.23 (dd, /= 13.2, 4.1 Hz, 2H), 4.86 (dd,
J=13.2,4.1 Hz, 2H), 4.61 (t, J=9.4 Hz, 2H), 4.06-3.95 (m, 4H), 2.45 (s, 2H), 1.82-1.75 (m, 4H),
1.52-1.47 (m, 4H), 1.00 (t, J = 7.4 Hz, 6H). 3C NMR (100 MHz, CDCl;, 25 °C): 3 [ppm] = 181.8,
153.0, 148.6, 128.9, 126.3, 124.5, 123.1, 119.6, 119.2, 118.8, 114.4, 91.3, 69.4, 39.3, 31.6, 26.5,
22.7, 19.3, 14.0. ESI-TOF-HRMS: m/z caled for [M+H]" CgH73N4OgS,", 1137.4864; found
1137.4873 (error = +0.8 ppm).
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ESI mass spectrum of compound 1b-anti.
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1b-syn. White solid, yield (220 mg, 21 %), m.p. > 320 °C (Decomposed); 'H NMR (400 MHz,
CDCl;, 25 °C): & [ppm] = 8.37 (d, J= 9.4 Hz, 2H), 7.67 (d, /=9.2 Hz, 2H), 7.15 (dd, J=9.4,9.2
Hz, 4H), 6.26 (s, 1H), 5.40 (dd, J = 13.2, 6.9 Hz, 2H), 5.21 (s, 1H), 4.85 (d, J = 13.2 Hz, 2H),
4.71 (d, J = 6.9 Hz, 2H), 4.05-3.95 (m, 4H), 2.45 (s, 2H), 1.77-1.70 (m, 4H), 1.49-1.44 (m, 4H),
0.96 (t, J = 7.4 Hz, 6H). 3C NMR (100 MHz, CDCls, 25 °C): & [ppm] = 181.3, 152.9, 148.9,
129.0, 126.5, 124.4, 123.8, 120.0, 119.1, 118.9, 114.0, 91.2, 69.4, 39.3, 31.6, 26.5, 22.8, 19.3,
13.9. ESI-TOF-HRMS: m/z calcd for [M+H]" CgH73N4OgS,*, 1137.4864; found 1137.4844
(error =-1.8 ppm).
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3. Single Crystal Structure

Single crystal X-ray data for 1b-anti was collected at 120.0(1) K with Agilent Super-Nova dual
wavelength diffractometer with a micro-focus X-ray source and multilayer optics
monochromatized Cu-Ko (A = 1.54184 A) radiation. Program CrysAlisPro? was used for the data
collection and reduction. The intensities were corrected for absorption using analytical face index
absorption correction method® for all the data. The structures were solved with direct methods
(SHELXS?) and refined by full-matrix least squares on F? using the OLEX2%*, which utilizes the
SHELXL-2014 module?. Anisotropic displacement parameters were assigned to non-H atoms. All
hydrogen atoms (except N-H) were refined using riding models with U, (H) of 1.5U,,(C) for
terminal methyl groups, and 1.2 U,,(C) for other groups. The hydrogens bonded to N atoms were
found from the difference Fourier maps and refined with the ideal N-H distances (0.91 A) and
Uey(H) of 1.2 U, (N). Two chloride atoms of one cocrystallized CHCI; show disorder over two
positions according to the difference Fourier maps. Anisotropic displacement parameters and
geometry of the disordered molecule were restrained. The details of the crystals data, data

collection, and the refinement results are documented below.

Crystal data: 1b-anti: 0.22x0.12x0.04 mm, C75Hg;N¢OgS,Clo, M = 1577.62, triclinic, space group
P-1,a=12.1788(4) A, b = 13.6793(5) A, ¢ = 24.8910(6) A a= 89.173(2)°, p = 85.674(2)°, y =
65.484(3)°, V' =3761.5(2) A3, z=2, p =139 gcm>3, u=4.06 mm!, F(000)= 1644, 58494
reflections (6, = 67.49°) measured (13112 unique, R;, = 0.037, completeness = 96.3%), Final R
indices (I > 20(1)): R;= 0.040, wR, = 0.100, R indices (all data): R,= 0.050, wR, = 0.107. GOF =
1.02 for 932 parameters and 48 restraints, largest diff. peak and hole 0.61/-0.66 eA3. CCDC-
1443004 contains the supplementary data for this structure. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data request/cif, or by emailing data request@ccdc.cam.ac.uk,
or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2
1EZ, UK; fax: +44 1223 336033

2 CrysAlisPro 2012, Agilent Technologies. Version 1.171.36.31.

3 Clark, R. C.; Reid, J. S. Acta Cryst. 1995, A51, 887.

4 Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112—122.

5 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K. and Puschmann H., J. Appl. Cryst.
2009, 42, 339-341.
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Fig. S1 The crystal packing of 1b-anti along the crystallographic a-axis. The thermal ellipsoids

of all non-H atoms are drawn at 30% probability level.
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4. NMR Spectra of Host-Guest Complexes.
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Fig. §2 '"H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 2, (c) 1b-anti, and (b) its

2

equimolar mixture. The proton c of the guest experiences the upfield shift, the proton NH of the
host experiences the downfield shift, suggesting that the complexation between 1b-anti and guest
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Fig. $3 'H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 2, (c) 1b-syn, and (b) its

equimolar mixture. The proton ¢ of the guest experiences the upfield shift, suggesting that the

complexation between 1b-syn and guest 2.
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Fig. S4 'H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 3, (c) 1b-anti, and (b) its
equimolar mixture. The proton d of the guest experiences the upfield shift, the proton NH of the

host experiences the downfield shift, suggesting that the complexation between 1b-anti and guest

3.
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Fig. S5 '"H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 3, (¢) 1b-syn, and (b) its

equimolar mixture. The proton d of the guest experiences the large upfield shift, the proton NH of
the host experiences the downfield shift, suggesting that the complexation between 1b-syn and
guest 3.
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Fig. 6 'H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 4, (c) 1b-anti, and (b) its

equimolar mixture. The proton e and f of the guest experiences the upfield shift, the proton NH of

the host experiences the downfield shift, suggesting that the complexation between 1b-anti and
guest 4.
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Fig. S7 '"H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 4, (¢) 1b-syn, and (b) its

equimolar mixture. The proton e and f of the guest experiences the large upfield shift, suggesting

that the complexation between 1b-syn and guest 4.
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Fig. S8 '"H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 5, (c) 1b-anti, and (b) its
equimolar mixture. The proton g of the guest experiences the upfield shift, the proton NH of the

host experiences the downfield shift, suggesting that the complexation between 1b-anti and guest
5.
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equimolar mixture. The proton g of the guest experiences the large upfield shift, the proton NH of

the host experiences the downfield shift, suggesting that the complexation between 1b-syn and

guest 5.
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Fig. S10 'H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 6, (c) 1b-anti, and (b) its
equimolar mixture. The protons 4 and i of the guest undergo no shift at all, suggesting no

complexation between 1b-anti and guest 6.
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Fig. S11 '"H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 6, (c) 1b-syn, and (b) its
equimolar mixture. The protons / and i of the guest experiences upfield shift, suggesting that the

complexation between 1b-syn and guest 6.
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Fig. S12 '"H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 7, (c) la-anti, and (b) its

equimolar mixture. No obvious change on NH protons was observed, the protons j and k of the

guest undergo no shift at all, suggesting very weak binding between 1a-anti and guest 7.
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Fig. SI13 'H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 7, (c) la-syn, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons j and k of the

guest undergo no shift at all, suggesting very weak binding between 1a-syn and guest 7.

S22



a) b ]
|
b) 7+1b-anti
l L M_
c) -anti
l N

85 80 75 70 65 60 55 50 45 ppm
Fig. SI14 '"H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 7, (¢) 1b-anti, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons j and & of the

guest undergo no shift at all, suggesting very weak binding between 1b-anti and guest 7.
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Fig. S15 '"H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 7, (c) 1b-syn, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons j and k of the

guest undergo no shift at all, suggesting very weak binding between 1b-syn and guest 7.
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Fig. SI16 'H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 8, (c) la-anti, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons m, n and o of

the guest undergo no shift at all, suggesting very weak binding between 1a-anti and guest 8.
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Fig. SI7 "H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 8, (c) 1a-syn, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons m, n and o of

the guest undergo no shift at all, suggesting very weak binding between 1a-syn and guest 8.
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Fig. SI8 'H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 8, (c) 1b-anti, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons m, n and o of

the guest undergo no shift at all, suggesting very weak binding between 1b-anti and guest 8.
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Fig. S19 '"H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 8, (c) 1b-syn, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons m, n and o of

the guest undergo no shift at all, suggesting very weak binding between 1b-syn and guest 8.
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Fig. S20 'H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 9, (c) la-anti, and (b) its

equimolar mixture. No obvious change on NH protons was observed, the protons p, g and r of the

guest undergo no shift at all, suggesting very weak binding between 1a-anti and guest 9.
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Fig. §21 'H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 9, (c¢) la-syn, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons p, ¢ and r of the

guest undergo no shift at all, suggesting very weak binding between 1a-syn and guest 9.
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Fig. $22 '"H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 9, (c) 1b-anti, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons p, g and r of the

guest undergo no shift at all, suggesting very weak binding between 1b-anti and guest 9.
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Fig. §23 '"H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 9, (c) 1b-syn, and (b) its
equimolar mixture. No obvious change on NH protons was observed, the protons p, ¢ and r of the

guest undergo no shift at all, suggesting very weak binding between 1b-syn and guest 9.
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Fig. $24 'H NMR spectra (400 MHz, CDCl;, 25 °C) of (a) guest 10, (¢) la-anti, and (b) its

equimolar mixture. The protons s of the guest experiences the upfield shift, the proton NH of the

host experiences the downfield shift, suggesting that the complexation between 1a-anti and guest
10.
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Fig. $25 '"H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 10, (c) la-syn, and (b) its
equimolar mixture. The protons s of the guest experiences the upfield shift, the proton NH of the

host experiences the downfield shift, suggesting that the complexation between 1a-syn and guest
10.
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Fig. $26 'H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 10, (¢) 1b-anti, and (b) its

T

equimolar mixture. The protons s of the guest experiences the upfield shift, the proton NH of the

host experiences the downfield shift, suggesting that the complexation between 1b-anti and guest
10.
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Fig. S27 '"H NMR spectra (400 MHz, CDCls, 25 °C) of (a) guest 10, (c) 1b-syn, and (b) its

equimolar mixture. The protons s of the guest experiences the upfield shift, the proton NH of the

host experiences the downfield shift, suggesting that the complexation between 1b-syn and guest
10.
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5. Determination of Binding Constants.
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Fig. $28 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1b-anti (0.5 mM) titrated by the
guest 2 (0~15.0 mM). The nonlinear curve-fitting method and 1:1 binding stoichiometry as

reported before® were used to obtain the association constants.
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Fig. $29 Non-linear curve-fitting for the complexation between 1b-anti and the guest 2 in CDCl;
at 25 °C. The chemical shifts of proton NH was monitored during the titration for the calculation

of binding constants. This is the same for all the following experiments, unless otherwise noted.

6 G. Huang, Z. He, C. Cai, F. Pan, D. Yang, K. Rissanen and W Jiang. Chem. Commun., 2015, 51, 15490-
15493.
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Fig. $30 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.5 mM) titrated by the
guest 2 (0~75.0 mM).
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Fig. $31 Non-linear curve-fitting for the complexation between 1b-syn and the guest 2 in CDCl;
at 25 °C.
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Fig. $32 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1b-anti (0.5 mM) titrated by the
guest 3 (0~10.0 mM).
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Fig. $33 Non-linear curve-fitting for the complexation between 1b-anti and the guest 3 in CDCl;
at 25 °C.
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Fig. $34 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.5 mM) titrated by the
guest 3 (0~40.0 mM).
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Fig. §35 Non-linear curve-fitting for the complexation between 1b-syn and the guest 3 in CDCl;

at 25 °C.
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Fig. $36 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1b-anti (0.5 mM) titrated by the
guest 4 (0~50.0 mM).
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Fig. $37 Non-linear curve-fitting for the complexation between 1b-anti and the guest 4 in CDCl;
at 25 °C.
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Fig. $38 Partial 'H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.5 mM) titrated by the
guest 4 (0~200.0 mM).
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Fig. §39 Non-linear curve-fitting for the complexation between 1b-syn and the guest 4 in CDCl;
at 25 °C.
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Fig. $40 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1b-anti (0.1 mM) titrated by the
guest 5 (0~1.2 mM). This binding constant is very large. In order to obtain a more reliable data,
the concentration of 1b-anti was decreased to 0.1 mM. Even though, a large error was still

observed.
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Fig. $41 Non-linear curve-fitting for the complexation between 1b-anti and the guest 5 in CDCl;

at 25 °C. Proton 4 was used instead of proton NH since the former can be more clearly monitored

during titration.
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Fig. $42 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.1 mM) titrated by the
guest 5 (0~1.2 mM).

8.46 —

8.45 -

8.4 -
€ 843 d
£ &)
T 842 N
Q J
‘é’ 8.41 - host: 1b-syn
'é 1 K =41700£6500 M-
S 8.40-

i R? =0.9984
8.39 -
8.38 -

T L T 5 1 L] T L] 1 ¥ T
0.00000 0.00005 0.00010 0.00015 0.00020 0.00025
[GIM

Fig. §43 Non-linear curve-fitting for the complexation between 1b-syn and the guest 5 in CDCl;
at 25 °C.
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Fig. S44 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-anti (0.5 mM) titrated by the

guest 6 (0~75.0 mM). No obvious change on the 'H NMR spectra is observed, suggesting very
weak binding between 6 and 1b-anti (likely < 1 M-).
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Fig. $45 Partial 'H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.5 mM) titrated by the
guest 6 (0~75.0 mM).
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Fig. $46 Non-linear curve-fitting for the complexation between 1b-syn and the guest 6 in CDCl;

at 25 °C.
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Fig. $47 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1a-anti (0.5 mM) titrated by the
guest 7 (0~150.0 mM).
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Fig. §48 Non-linear curve-fitting for the complexation between 1a-anti and the guest 7 in CDCl;
at 25 °C.
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Fig. 49 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1a-syn (0.5 mM) titrated by the
guest 7 (0~150.0 mM).
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Fig. $50 Non-linear curve-fitting for the complexation between 1a-syn and the guest 7 in CDCl;
at 25 °C.

S48



[GYmM
__’___,f/ L___.150.0
100.0
75.0
k 50.0
40.0

00 4.95 4.90 4.85 4.80 4.75 4.70 4.65 . ppm
Fig. $51 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1b-anti (0.5 mM) titrated by the
guest 7 (0~150.0 mM).
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Fig. $52 Non-linear curve-fitting for the complexation between 1b-anti and the guest 7 in CDCl;
at 25 °C.
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Fig. 8§53 Partial 'H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.5 mM) titrated by the
guest 7 (0~150.0 mM).
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Fig. $54 Non-linear curve-fitting for the complexation between 1b-syn and the guest 7 in CDCl;
at 25 °C.
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Fig. S$55 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1a-anti (0.5 mM) titrated by the
guest 8 (0~100.0 mM).
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Fig. §56 Non-linear curve-fitting for the complexation between 1a-anti and the guest 8 in CDCl;

at 25 °C.
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Fig. §57 Partial 'H NMR spectra (400 MHz, CDCls, 25 °C) of 1a-syn (0.5 mM) titrated by the
guest 8 (0~50.0 mM). No obvious change on the 'H NMR spectra is observed, suggesting very

weak binding between 8 and 1a-syn (likely < 1 M1).

S52



[GI/mM

M T 100.0
AN N \ M 75.0

guest: ENJ A M 50.0
e
M A
ﬁ\}‘ M 10.0
M

0.5

T — T

48 4.6 ppm

T T

58 56 54
Fig. S$58 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1b-anti (0.5 mM) titrated by the
guest 8 (0~100.0 mM).
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Fig. $59 Non-linear curve-fitting for the complexation between 1b-anti and the guest 8 in CDCl;
at 25 °C.
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Fig. $60 Partial 'H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.5 mM) titrated by the

guest 8 (0~25.0 mM). No obvious change on the '"H NMR spectra is observed, suggesting very
weak binding between 8 and 1b-syn (likely < 1 M-).
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Fig. S61 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1a-anti (0.5 mM) titrated by the
guest 9 (0~100.0 mM).

3.80 A
3.75 5
3.70 5
]
8
= 3.65
T [
zZ N\;N
e 3.60 host: 1a-anti
° K=26+06 M’
[eR
3.55 R?=0.9976
3.50 4
1 | I ) 1 1
0.00 0.02 0.04 0.06 0.08 0.10
[GIM

Fig. $62 Non-linear curve-fitting for the complexation between 1a-anti and the guest 9 in CDCl;
at 25 °C.
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Fig. S63 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1a-syn (0.5 mM) titrated by the
guest 9 (0~100.0 mM).
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Fig. §64 Non-linear curve-fitting for the complexation between 1a-syn and the guest 9 in CDCl;
at 25 °C.
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Fig. S65 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1b-anti (0.5 mM) titrated by the
guest 9 (0~75.0 mM).

5.3
5.2
5.1
£
5.0
& N
T N. N
Z 494
“; host: 1b-anti
S = -1
S a5- K=185+07 M
o R2 = 0.9995
4.7 -
4.6 -
1 I * I 1 1 s 1 ¥ ||

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
[GIM

Fig. $66 Non-linear curve-fitting for the complexation between 1b-anti and the guest 9 in CDCl;
at 25 °C.
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Fig. $67 Partial 'H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.5 mM) titrated by the
guest 9 (0~100.0 mM).
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Fig. $68 Non-linear curve-fitting for the complexation between 1b-syn and the guest 9 in CDCl;
at 25 °C.
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Fig. S$69 Partial 'H NMR spectra (400 MHz, CDCl;, 25 °C) of 1a-anti (0.5 mM) titrated by the
guest 10 (0~0.75 mM).
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Fig. 8§70 Non-linear curve-fitting for the complexation between la-anti and the guest 10 in

CDCl; at 25 °C.
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Fig. S71 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1a-syn (0.5 mM) titrated by the

guest 10 (0~0.75 mM).
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Fig. §72 Non-linear curve-fitting for the complexation between la-syn and the guest 10 in

CDCl; at 25 °C.
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Fig. §73 Partial '"H NMR spectra (400 MHz, CDCls, 25 °C) of 1b-anti (0.5 mM) titrated by the
guest 10 (0~1.0 mM).
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Fig. §74 Non-linear curve-fitting for the complexation between 1b-anti and the guest 10 in

CDCl; at 25 °C.
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Fig. §75 Partial '"H NMR spectra (400 MHz, CDCl;, 25 °C) of 1b-syn (0.5 mM) titrated by the
guest 10 (0~1.0 mM).
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Fig. §76 Non-linear curve-fitting for the complexation between 1b-syn and the guest 10 in

CDCl; at 25 °C.

S62



