Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2016

Experimental

Chemicals. 2-Methylimidazole (MIM, purity 99%), zinc acetate dihydrate $(Zn(CH_3COO)_22H_2O, purity 97\%)$, and anhydrous propylene carbonate (PC) were purchased from Sigma-Aldrich Chemical Co. Polyvinylpyrrolidone (PVP, K30), hydrochloric acid solution, tetraethylammonium tetrafluoroborate (NEt₄BF₄), and methanol were obtained from Nacalai Tesque Reagent Co. All chemicals were used without further purification or treatment.

Material characterizations. The SEM and TEM images were taken on Hitachi S-4800 and JEOL JEM-2100F, 200 kV systems, respectively. A Rigaku 2500 system equipped with Cu K α radiation ($\lambda = 0.15406$ nm) was used to study the crystalline structures of the powder samples. The details of different bondings present on the material surfaces have been characterized using a micro Raman (Horiba-Jovin Yvon T65000) analysis station. The nitrogen adsorption–desorption isotherms were collected on a quantachrome autosorb automated gas sorption system at 77 K.

Details of device fabrication. Electrochemical measurements were carried out using a CHI 660e (CH Instruments) electrochemical workstation. For electrochemical measurements of supercapacitor cell, a pair of NPC films was sandwiched in an HS test cell (Hohsen Corp.) configuration. The weight of each electrode was kept at 2 mg. A 2-M tetraethylammonium tetrafluoroborate (NEt₄BF₄) in anhydrous propylene carbonate (PC) was used as an electrolyte. The separator used was a Wattman glass microfiber filter paper socked with the electrolyte. The electrochemical cell was fabricated in a glove box, and then tightly packed device measurements were carried out in an air atmosphere. The cyclic voltammetry data were collected in the potential window of 0.0 to 2.4 V with a scan speed variation from 10 to 500 mV·s⁻¹. The charge–discharge studies with the extension of potential window studied at various potential windows from 1.4 to 2.4 V. The electrochemical impedance spectroscopy analysis was carried out within a frequency range from 1 mHz to 105 Hz at а potential equal to the open circuit potential.

Sample	S _{BET} (m²·g ⁻¹)	S _{micro} (m² ⋅g ⁻¹)	S _{micro} /S _{BET} (%)	V _{pore} (cm³ ⋅g ⁻¹)	V _{micro} (cm³ ⋅g ⁻¹)	V _{micro} /V _{pore} (%)
NPC	1873	876	46.8	1.17	0.48	41.0
AC	1734	753	43.4	0.99	0.44	44.4

Table S1 Summary of surface area and pore volume obtained from N_2 adsorption isotherms.

Figure S1

Figure S1 (a) Low- and (b) high-magnification SEM images, (c) wide-angle XRD pattern, and (d) Raman spectra for MOF-derived NPC.

Figure S2

Figure S2 (a) SEM image, (b) TEM image, (c) high-resolution TEM image (pores highlighted by dotted lines), and (d–f) HAADF-STEM image and elemental mapping of (e) carbon and (f) nitrogen.

Figure S3

Figure S3 (a) Nitrogen adsorption-desorption isotherms and (b) NLDFT pore-size distribution of MOFderived NPC sample (shown by pink color) and AC sample (shown by purple color).

Figure S4 (a) CV curves of NPC-based supercapacitor cell with upper cell voltage varied from 1.2 to 2.4 V, (b) galvanostatic charge-discharge studies in the potential window of 0.0 to 2.4 V at various applied currents, and (c) variation of stack capacitance at the applied currents. (d) CV curves of AC-based supercapacitor cell with upper cell voltage varied from 1.2 to 2.4 V, (e) galvanostatic charge-discharge studies in the potential window of 0.0 to 2.4 V at various applied currents, and (f) variation of stack capacitance at the applied currents, and (f) variation of stack capacitance at the applied currents for the AC sample.

Figure S5

Figure S5 Electrochemical impedance spectra (EIS) measured at a potential equal to open circuit potential.