Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Supplementary Materials

Well-defined silica-supported zirconium-imido complexesmediated heterogeneous imine metathesis

Bilel Hamzaoui, ^a Jérémie D. A. Pelletier, ^a Edy Abou-Hamad, ^a and Jean-Marie Basset ^a *

^aKing Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955-6900, Saudi Arabia

1. General Procedures

General: All experiments were carried out under a controlled atmosphere (i.e., argon or nitrogen). The syntheses and the treatments of the surface species were carried out by using high-vacuum lines ($< 10^{-5}$ mbar) and glovebox techniques. Elemental analyses were performed at the Microanalysis Labor Pascher and KAUST Analytical Corelab. Zr(NEt₂)₄ was purchased from Sigma–Aldrich. FTIR spectra were recorded on a Nicolet 6700 FTIR spectrometer equipped with a cell designed for in situ experiments with CaF₂windows. Typically, sixteen scans were accumulated for each spectrum (resolution of 4 cm⁻¹). One dimensional ¹H MAS and ¹³C CP/MAS solid-state NMR spectra were recorded on a Bruker AVANCE III spectrometer operating at 400 MHz for ¹H, with a conventional double-resonance 4 mm CP/MAS probe. The samples were introduced under argon into zirconia rotors, which were then tightly closed. The spinning frequency was set to17 KHz for ¹H and to 10 KHz for ¹³C spectra. NMR chemical shifts are reported with respect to TMS as an external reference for¹H and¹³C. For the CP/MAS ¹³C NMR experiments, the following sequence was used: 900 pulse on the proton (pulse length= 2.4 s), then a cross-polarization step with a contact time typically 2 ms, and finally acquisition of the13C signal under high power proton decoupling (see the Supporting Information for details).

Preparation of $[\equiv$ **Si-O-Zr(NEt**₂)₃] (1): In a double shclenk, 132.43 mg of Zr(NEt₂)₄ in slight excess (1.1 eq.) with respect to the amount of surface accessible silanols (0.3 mmol silanols groups per gram) was reacted with 1 g of SiO₂₋₇₀₀ at room temperature in pentane for 1 hr. After filtration and four washing cycles, all volatile compounds were evaporated and the white solid was dried for 1 hr under dynamic vacuum (< 10⁻⁵ mbar).

Preparation of $[=Si-O-Zr(=NEt)NEt_2]$ (2): In a glass reactor (230 mL), 1 g of (1) was heated with the gradient room temperature to 200 °C (1 °C per minute) and then at 200 °C for 24 hours under dynamic vacuum (< 10⁻⁵ mbar). The resulting powder was then cooled to 22 °C analyzed by FT-IR and SS NMR.

Preparation of [=Si-O-Zr(=NPh)NEt2] (3): In a double Schlenk, an excess of benzal(benzyl)amine (1.5 eq.) was reacted with 500 mg of **2** at room temperature in toluene for 4hr. After filtration and four washing cycles, all gas-phase products was analysed by GC and the resulting solid was dried for 1 hr under dynamic vacuum (< 10^{-5} mbar).

Catalytic imine metathesis reaction: A vacuum sealed ampule was charged, in a glove box, sequentially with the catalyst **3** (0.04 equiv), toluene (400 μ L), (4-fluorobenzylidene)-(4-fluorophenyl) amine (1.0 equiv), the imine **5** (1.0 equiv) and a Teflon-coated stir bar. The ampules was then removed from the glove box and placed in a high vacuum line .The mixture was condensed by cooling with liquid nitrogen and the ampules were evacuated (< 10⁻⁵ mbar). After sealing, the ampules were placed in an oil bath (80 °C). The reaction mixture was heated for 4, 6 amd 12 h and each time after reaction it was cooled to 22 °C. The product solution was filtrated to remove the catalyst and the remaining liquid product was analyzed by GC-FID and GC-MS

Catalyst recycling experiments: After 12 hrs, the catalytic material was isolated by filtration, washed with toluene four times, dried under high vacuum ($< 10^{-5}$ mbar) during 8 hours (at 60°C), and reused in imine metathesis. This sequence was performed five times.

Solid State Nuclear Magnetic Resonance Spectroscopy:

One dimensional ¹H MAS and ¹³C CP-MAS solid state NMR spectra were recorded on a Bruker AVANCE III spectrometer operating at 400 MHz for ¹H, with a conventional double resonance 4mm CPMAS probe. The samples were introduced under argon into zirconia rotors, which were then tightly closed. The spinning frequency was set to 17 for ¹H and 10 KHz for ¹³C spectra, respectively. NMR chemical shifts are reported with respect to TMS as an external reference for ¹H, ¹³C. For CP/MAS ¹³C NMR, the following sequence was used: 90⁰ pulse on the proton (pulse length 2.4 s), then a cross-polarization step with a contact time typically 2 ms, and finally acquisition of the ¹³C signal under high power proton decoupling. The delay between the scan was set to 5 s, to allow the complete relaxation of the ¹H nuclei and the number of scans was between 3,000-5,000 for carbon, 100,000 for ¹⁵N and 32 for proton. An apodization function (exponential) corresponding to a line broadening of 80 Hz was applied prior to Fourier transformation.

¹H-¹H multiple-Quantum Spectroscopy: Two-dimensional double-quantum (DQ) experiment was recorded on Bruker AVANCE III spectrometer with a conventional double resonance 3.2 mm CPMAS probe, according to the following general scheme: excitation of DQ coherences, t1 evolution, Z-filter, and detection. The spectra were recorded in a rotor synchronized fashion in t1; that is the t1 increment was set equal to one rotor period (4.545 μ s). One cycle of the standard back-to-back (BABA) recoupling sequence was used for the excitation and reconversion period. Quadrature detection in w1 was achieved using the States-TPPI method. A spinning frequency of 22 KHz was used. The 90^o proton pulse length was 2.5 μ s, while a recycle delay of 5 s was used. A total 128 t1 increments with 32 scan each were recorded.

Fourier Transformed Infrared Spectroscopy. FTIR spectra were recorded on a Nicolet 6700 FT-IR spectrometer equipped with a cell under controlled atmosphere. Typically, 16 scans were accumulated for each spectrum (resolution 4 cm⁻¹).

2. Nuclear Magnetic Resonance Spectra

Details about figure 2: (A) 1D ¹H spin-echo MAS solid state NMR spec-trum of **2** (acquired on a 600 MHz NMR spectrometer under a 20 KHz MAS spinning frequency, number of scans = 8, repetion delay = 5 s), (B) ¹³C CP/MAS NMR spectrum of **2** (acquired on 600 MHz NMR spectrometer with 10 KHz MAS, number of scan = 20000, repetition delay = 4 s contact time = 2 ms, line broadening = 80 Hz). (C) 2D 1H-1H double-quantum (DQ)/single-quantum (SQ), (D) 1H-1H triple-quantum (TQ)/SQ (acquired on a 600 MHz NMR spectrometer under 22 KHz

MAS spinning frequency with a back-to-back re-coupling sequence, number of scans = 128, repetition delay = 5 s number of t1 increments = 128, with the increment set equal to one rotor period of 45.45 μ s) and (E) 2D CP/MAS HETCOR NMR spectrum with short contact times of 0.2 ms under 8.5 KHz MAS, number of scans per incriment = 4000, repetition delay = 4 s, number of t1 increments = 32, line broadening = 80 Hz).

Details about figure 3: (A) 1D ¹H spin-echo MAS solid state NMR spec-trum of **3** (acquired on a 600 MHz NMR spectrometer under a 20 KHz MAS spinning frequency, number of scans = 8, repetion delay = 5 s), (B) 2D 1H-1H double-quantum (DQ)/single-quantum (SQ), (C) ¹³C CP/MAS NMR spectrum of **3** (acquired on 600 MHz NMR spectrometer with 10 KHz MAS, number of scan = 20000, repetition delay = 4 s contact time = 2 ms, line broadening = 80 Hz) and (D) 2D CP/MAS HETCOR NMR spectrum with short contact times of 0.2 ms under 8.5 KHz MAS, number of scans per incriment = 4000, repetition delay = 4 s, number of t1 increments = 32, line broadening = 80 Hz).

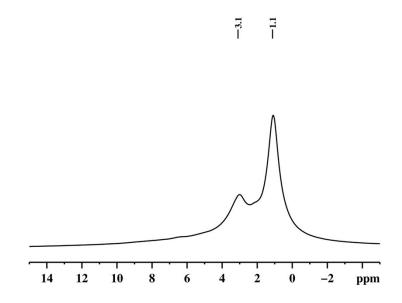


Figure S1. 1D ¹H spin-echo MAS solid state NMR spectrum of 2

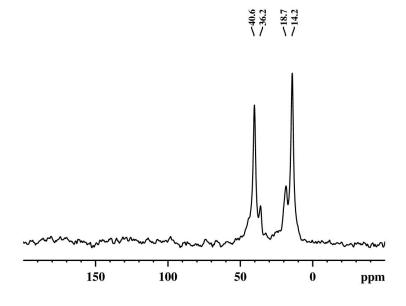


Figure S2. ¹³C CP/MAS NMR spectrum of 2

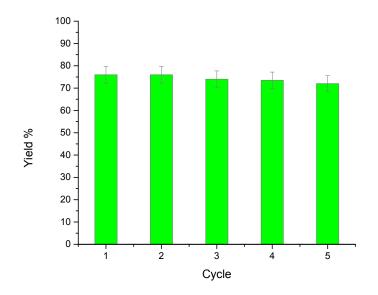


Figure S3. Catalyst recycling experiments

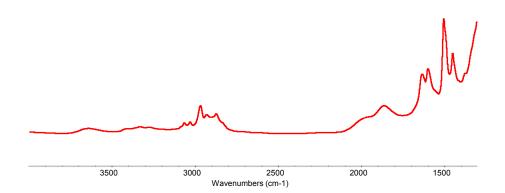


Figure S4 : FT-IR spectra of the catalyst 3 (in entryl) after the first catalytic cycle

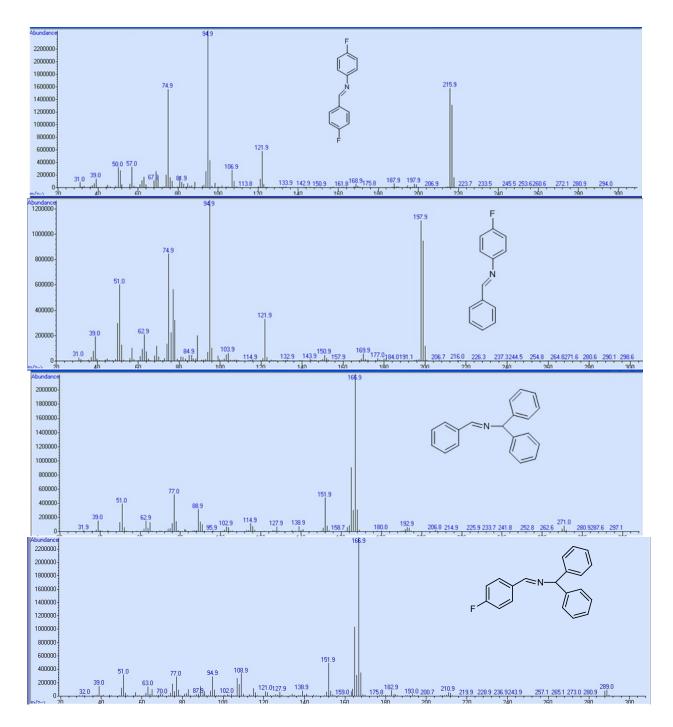


Figure S5. GC/Ms Characterization of the products obtained after reaction in table 1 entry 2

Table S1: Catalytic imine metathesis substrates	testing using catalysts 3 and 2.
---	----------------------------------

Entry	Imine 5	Catalyst	t Conv(%) ^a			TON	initial rate*	TOF
		4 mol%	2 hrs	6 hrs	12 hrs		(mol min ⁻¹)	(h ⁻¹)
1	€¢~~©	3	33	74	76	19	0.16	1.58
2		3	28	62	65	16	0.14	1.33
3		3	30	50	52	13	0.12	1.08
4	N ^{-Si}	3	25	47	49	12	0.13	1
5		2	39	66	68	17	0.14	1.41