1

Supporting Information For

Dye Molecule Bonded Titanium Alkoxide: A Possible New Type

of Dyes for Sensitized Solar Cells

H.-C. Su, Y.-Y. Wu, J.-L. Hou, G.-L. Zhang, Q.-Y. Zhu,* Jie Dai*

1. Experimental

2. Figures

Fig. S1. Structure of 4-(2-pyridylazo)resorcinol (PAR).

Fig. S2. The IR spectra of 1 and dye PAR.

Fig. S3 Thermal gravimetric analysis of compound 1.

Fig. S4. Solid-state UV-vis-NIR absorption spectrum of 1 in nm scale.

Fig. S5. (a) The I-V plot of 1. (b) Band energies of the dye sensitized TiO films.

Fig. S6. Absorption spectra of the films, blank mesoporous TiO_2 film, PAR-TiO_2 film and compound 1-TiO_2 film.

Fig. S7. Photocurrent densities of the blank mesoporous TiO_2/ITO electrode and the TiO_2/ITO electrodes dipped with PAR dye, compound **1** and L0 dye, respectively.

3. Table

Table S1 Crystal Data and Structural Refinement Parameters for 1.

EXPERIMENTAL

General remarks. Dye PAR (PAR = 4-(2-pyridylazo)resorcinol) and all analytically pure reagents were purchased commercially and used without further purification. Dye L0 was synthesized as reported (L0 = 2-cyano-3-(4-(diphenylamino)phenyl) acrylic acid, Chem. Mater. 2004, 16, 1806-1812). The FT-IR spectra were recorded as KBr pellets on a Nicolet Magna 550 FT-IR spectrometer. Elemental analyses of C, H and N were performed using a VARIDEL III elemental analyzer. Solid-state room-temperature optical diffuse reflectance spectra of the micro crystal samples and absorption spectra of the films were obtained with a Shimadzu UV-3150 spectrometer. The absorption (α/S) data were calculated from the reflectance using the Kubelka-Munk function, $\alpha/S = (1-R)^2/2R$ (W. W. Wendlandt, H. G. Hecht, *Reflectance Spectroscopy*, Interscience Publishers, New York, 1966) where R is the reflectance at a given energy, α is the absorption, and S is the scattering coefficient. Room-temperature X-ray diffraction data were collected on a D/MAX-3C diffractometer using a Cu tube source (Cu-K α , $\lambda = 1.5406$ Å). The morphologies of the resulting films were observed with a JSM-5600LV scanning electron microscope (SEM). Thermoanalytical measurement was performed using a SDT 2960 microanalyzer and the sample was heated under a nitrogen stream of 100 ml min⁻¹ with a heating rate of 20 °C min⁻¹.

Synthesis of the clusters.

[Ti₄(OⁱPr)₈(PAR)₄]·H₂O (1). Analytically pure Ti(OⁱPr)₄ (0.1 mL, 0.26 mmol), and 4-(2pyridylazo)resorcinol (5.4 mg, 0.0025 mmol) were mixed in 0.3 mL anhydrous isopropanol. The mixture was sealed in a thick Pyrex tube (0.7 cm dia., 18 cm length) and quickly degassed by argon. The sealed tube is heated at 60 °C for 7 days, and then cooled to room temperature to yield sparking golden-black crystals (12.5 % yield based on PAR). The crystals are rinsed with isopropanol, and dried. The compound is preserved under sealed and dry environment. Anal. Calcd for C₆₈H₈₆N₁₂O₁₇Ti₄ (MW1535.02): C, 53.21; H, 5.65; N, 10.95. Found: C, 53.89; H, 5.71; N, 11.98. Important IR data (KBr, cm⁻¹): 2965(w), 2865(w), 1606(w), 1590(vs), 1489(m), 1451(m), 1360(vs), 1285(s), 1235(vs), 1198(s), 1148(m), 1105(s), 1001(s,b), 833(m), 778(w), 680(w), 596(w,b), 538(w).

X-ray crystallographic study. The measurements were carried out on a Rigaku Mercury CCD diffractometer at low temperature with graphite monochromated MoK α ($\lambda \Box = 0.71073$ Å) radiation at 293(2) K. X-ray crystallographic data were collected and processed using CrystalClear (Rigaku 2000). The structure were solved by direct methods using SHELXS-2014 and the refinement was performed against F^2 using SHELXL-2014. All the non-hydrogen atoms are refined anisotropically. The hydrogen atoms are positioned with idealized geometry and refined with fixed isotropic displacement parameters.

Film preparation and photocurrent measurement. Substrate film of TiO₂ was prepared by solution coating method. The TiO_2 gel solution was prepared by adding 0.15 mL 37% HCl to a mixtrue of 1.0 mL Ti(OⁱPr)₄ and 14.5 mL ethanol. The new prepared gel was spin-coated on a precleaned ITO substrate (100 Ω/\Box) at 2000 rpm/s for 30 s and then the substrate was annealed at 500 °C for one hour. This procedure yielded uniform thin layered TiO₂ substrate (150 nm in thickness based on SEM) for photocurrent measurements. The dye sensitized films were prepared by solution coating method on the TiO_2/ITO electrode at 2000 rpm/s for 30 s. All the coating solution concentrations used in a parallel experiment were carefully calculated to be sure that the same molar quantities of Ti, dye or both are contained. A 150-W high pressure xenon lamp, positioned 20 cm far from the surface of the ITO electrode, was employed as a light source. The photocurrent experiments were performed on a CHI650 electrochemistry workstation in a three-electrode system, the sample coated ITO glass as the working electrode, a Pt plate as auxiliary electrode and a saturated calomel electrode (SCE) as reference electrode. The effective irradiation area was about 1.0 cm². An I₂/I₃-solution (0.05 mmol·L⁻¹ I₂ in saturated KI) in 100 mL CH₃CN/HOⁱPr mixed solvent (4:1 in volum) was used as the medium. The applied potential was constantly 0.1 V. The lamp was kept on continuously, and a manual shutter was used to block exposure of the sample to the light.

Fig. S1. Structure of 4-(2-pyridylazo)resorcinol (PAR).

Fig. S2. The IR spectra of **1** and dye PAR. The vibration at 1590 cm⁻¹ indicates the coordinated diazo group of PAR with a red shift. The bands at about 1489 and 833 cm⁻¹ are assigned to the characteristic bands of the aromatic planes. Isopropoxy groups are detected by the v_{C-H} (2865–2965 cm⁻¹ and 1360 cm⁻¹), and v_{Ti-O-C} (about 1001 cm⁻¹) vibrations. The bands around 596 cm⁻¹ are attributed to the Ti–O vibrations.^[*]

{*} (a) T. J. Boyle, R. P. Tyner, T. M. Alam, B. L. Scott, J. W. Ziller and B. G. Potter, *J. Am. Chem. Soc.*, 1999, **121**, 12104–12112; (b) P. Piszczek, A. Radtke, T. Muzioł, M. Richert and J. Chojnacki, *Dalton Trans.*, 2012, **41**, 8261–8269; (c) Y.-Y. Wu, W. Luo, Y.-H. Wang, Y.-Y. Pu, X. Zhang, L.-S. You, Q.-Y. Zhu, and J. Dai, *Inorg. Chem.*, 2012, **51**, 8982–8988.

Fig. S3 Thermal gravimetric analysis shows that compound **1** lost one water molecule below 100 $^{\circ}$ C (2.0%, calculated 1.2%) and followed by decomposition of the iso-propoxide in the range of 50 to 300 $^{\circ}$ C to evolvement of di-isopropoether (25.6%, calculated 26.8%). The mass loss over 300 $^{\circ}$ C might be assigned to the incomplete decomposition of the aromatic dye molecule.

Fig. S4. Solid-state UV-vis-NIR absorption spectrum of 1 in nm scale.

Fig. S5. (a) The I-V plot of 1. (The electrode prepared by coating a water solution of 1 on TiO2/ITO substrate, three-electrode system, Na_2SO_4 solution in 100 mL MeCN- HOⁱPr by 4:1 volume, vs. SCE) (b) Band energies (eV) of the dye sensitized TiO film.

Fig. S6. Absorption spectra of the films, blank mesoporous TiO_2 film, PAR-TiO_2 film and compound 1-TiO_2 film, which shows the increased CT band (2.3 eV, 540 nm) of the film prepared from 1.

Fig. S7. Photocurrent densities of the blank mesoporous TiO_2/ITO electrode (line a, black) and the TiO_2/ITO electrodes dipped with PAR dye (line b, green), compound **1** (line c, red) and L0 dye (line d, blue), respectively. (three-electrode system, I_2/KI solution in 100 mL MeCN-HOⁱPr by 4:1 volume).

The mesoporous TiO_2/ITO was prepared by rolling a layer of slurry of TiO_2 nano particles (25 nm) on a pre-coated thin TiO_2 substrate film that is described in experimental section. Then the substrate was annealed at 500 °C for another one hour. The dye sensitized electrodes were prepared by solution dipping method. {**}

{**} D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, G. Boschioo, T. Brinck,A. Hagfeldt, L. Sun, *J. Org. Chem.* 2007, 72, 9550–9556.

P.S.

Dye L0 [2-cyano-3-(4-(diphenylamino)phenyl) acrylic acid] is a basic arylamine reference dye, which is easily synthesized and has been used in real DSSC studies (*Chem. Soc. Rev.*, 2013, **42**, 3453-3488, *Chem. Mater.* 2004, 16, 1806–1812).

L0 =

	1
formula	$C_{68}H_{86}N_{12}O_{17}Ti_4$
fw	1535.02
cryst size (mm ³)	$0.70 \times 0.40 \times 0.30$
cryst syst	tetragonal
space group	$P-42_1c$ (114)
<i>a</i> (Å)	17.367(3)
<i>b</i> (Å)	17.367(3)
<i>c</i> (Å)	13.730(3)
α (deg)	90.00
β (deg)	90.00
γ (deg)	90.00
$V(Å^3)$	4141.2(14)
Z	2
$\rho_{\text{calcd}} (\text{g cm}^{-3})$	1.208
<i>F</i> (000)	1548
μ (mm ⁻¹)	0.437
<i>T</i> (K)	293(2)
reflns collected	12612
unique reflns	3549
observed reflns	2951
no. params	211
GOF on F^2	1.141
$R_1[I \ge 2\sigma(I)]$	0.0807
$_{W}R_{2}$	0.1887

Table S1 Crystal Data and Structural Refinement Parameters for 1