Electronic Supplementary Information

## Affinity-based thermoresponsive precipitation of proteins modified with polymer-binding peptides

Seigo Suzuki, Toshiki Sawada, Takashi Ishizone and Takeshi Serizawa\*

Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Fax: +81-3-5734-2128; E-mail: serizawa@polymer.titech.ac.jp

## **Experimental details**

**Materials.** A Ph.D-12<sup>TM</sup> Phage Display Peptide Library Kit and *Escherichia coli* strain ER2738 were purchased from New England Biolabs. NovaSynTGR resin, 9-fluorenylmethyloxycarbonyl (Fmoc) amino acid derivatives, and 2-(1*H*-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate were purchased from Novabiochem. 1-Hydroxybenzotriazole monohydrate and *N*,*N*'-tetramethylenebismaleimide were purchased from Tokyo Chemical Industry Corporation. Bovine serum albumin was purchased from Wako Pure Chemical Industries. Human serum albumin (HSA, lyophilized powder, fatty acid free, globulin free,  $\geq$ 99%) and  $\alpha$ -cyano-4-hydroxycinnamic acid (CHCA) were purchased from Sigma-Aldrich. All other reagents were purchased from Nacalai Tesque. Ultrapure water with more than 18.2 M $\Omega$ ·cm was supplied by a Milli-Q system (Merck Millipore) and was used for all the experiments.

Peptide screening against PNIPAM films. The target films composed of water-insoluble poly(N-isopropylacrylamide) (PNIPAM,  $M_n = 11\ 000$ ,  $M_w/M_n = 1.20$ , m : r = 85 : 15) synthesized by living anionic polymerization<sup>1</sup> were prepared by spin-casting (2000 rpm, 1 min) from a N,N-dimethylformamide (DMF) solution at a polymer concentration of 20 mg mL<sup>-1</sup> on a glass substrate. Then, the resulting films were vacuum dried for 5 h. Affinitybased peptide screening against the PNIPAM films was performed according to our previously published protocols.<sup>2,3</sup> An aliquot (5  $\mu$ L) containing 1.2 × 10<sup>10</sup> plaque-forming units (pfu) of the phage library solution in Tris-buffered saline (TBS, 50 mM Tris, 150 mM NaCl, pH 7.5) was mounted on the target films for 10 min at 30 °C. The films were previously conditioned with TBS for 12 h at 30 °C before mounting the phage library solution. Unbound and weakly bound phages were removed by rinsing the films once using 100 µL of TBS containing 0.1% Tween 20 and then five times using 200 µL of TBS. The bound phages were eluted by mounting 100  $\mu$ L of the elution buffer solution (0.5 M glycine-HCl containing 1 mg mL<sup>-1</sup> bovine serum albumin, pH 2.2) on the films for 15 min at 30 °C. The solution containing the eluted phages was neutralized with 5.7 µL of a Trisbuffer solution (1 M Tris, pH 9.1). The eluted phages were amplified by infection with Escherichia coli strain ER2738, and the amplified phages were then purified using a polyethylene glycol/NaCl solution for use in the next round of peptide screening. Five rounds of peptide screening were repeated, followed by cloning and DNA sequencing of the phages.

**Phage binding assay.** The binding capabilities of the screened and wild type phages against the target PNIPAM films were evaluated by titer counting assays. The PNIPAM films were prepared on a 96-well glass plate and were pre-conditioned with TBS for 12 h before

performing the binding assay. Phage solutions (10 pM in TBS, 50  $\mu$ L/well) were mounted on the films for 1 h at 20 or 30 °C. After rinsing the samples four times with TBS containing 0.1% Tween 20 (100  $\mu$ L/well) and then once with TBS (200  $\mu$ L/well) at 20 or 30 °C, the bound phages were eluted using the elution buffer solution (100  $\mu$ L/well) for 15 min at 20 or 30 °C. The eluted phage solutions were neutralized using a Tris-buffer solution, and the amounts of phages in the solutions were determined by titer counting assays.

Solid-phase peptide synthesis. Peptides with a free N-terminus and an amidated Cterminus were prepared by solid-phase peptide synthesis using standard Fmoc-based procedures according to a previously published protocol.<sup>4</sup> The peptide chains were assembled on a NovaSynTGR resin (amino group 0.25 mmol g<sup>-1</sup>) using Fmoc amino acid 2-(1*H*-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium derivatives (3 equiv.) with hexafluorophosphate (3 equiv.), 1-hydroxybenzotriazole monohydrate (3 equiv.), and N,Ndiisopropylethylamine (6 equiv.) in N-methylpyrrolidone (NMP) for coupling, and using 20% piperidine in NMP for Fmoc group removal. To cleave the peptides from the resin and to remove the side chain protecting groups, the resins were treated with trifluoroacetic acid (TFA)/thioanisole/m-cresol (10/0.75/0.25, v/v/v) for 3 h. The crude peptides were purified by reverse-phase high-performance liquid chromatography (ELITE LaChrom, HITACHI High-Technologies) using a C18 column (COSMOSIL 5C18-AR-300, 20 × 150 mm, Nacalai Tesque) with a linear gradient from 99.9% H<sub>2</sub>O/0.1% TFA to 99.9% acetonitrile/0.1% TFA at a flow rate of 6 mL min<sup>-1</sup>. The peptides were identified by liquid chromatography-mass spectrometry (Prominence UFLC system, MS-2020, Shimadzu) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS, AXIMA-CFR mass spectrometer, Shimadzu) using CHCA as a matrix reagent.

**Preparation of peptide-modified HSA.** HSA with a maleimide group was prepared by reacting *N*,*N*'-tetramethylenebismaleimide with the Cys34 residue of HSA according to the following procedure. *N*,*N*'-Tetramethylenebismaleimide (15 mM, 50  $\mu$ L) in DMF was mixed with HSA (170  $\mu$ M, 450  $\mu$ L) in phosphate-buffer saline (PBS, 8.1 mM Na<sub>2</sub>HPO<sub>4</sub>, 1.47 mM KH<sub>2</sub>PO<sub>4</sub>, 137 mM NaCl, 2.7 mM KCl, pH 7.4) for 3 d at 37 °C. The products were purified by dialysis (MWCO: 12-14 kDa) in PBS at 4 °C. The amount of unmodified Cys residues of HSA was quantified using Ellman's reagent. HSA (3  $\mu$ M) was mixed with 5-(3-carboxy-4-nitrophenyl)disulfanyl-2-nitrobenzoic acid (10  $\mu$ M) in PBS for 1 h at ambient temperature. The amount of Cys residues of HSA was determined by ultraviolet-visible (UV-vis) spectra (V-550, Jasco). The c2 peptide with an additional Cys residue at the C-terminus (1.7 mM) was reacted with HSA with a maleimide group (170  $\mu$ M) in PBS (pH 7.4) for 3 d at 37 °C to prepare peptide-modified HSA. The products were purified by dialysis (MWCO: 12-14 kDa) in water at 4 °C and were then lyophilized. The peptide-

modified HSA was identified by MALDI-TOF-MS spectrometry using CHCA as a matrix reagent.

**Preparation of fluorescently labeled peptide-modified HSA.** To quantify HSA after the thermoresponsive precipitation experiments, the amino groups of the Lys residues of HSA were labeled with fluorescent molecules. 5-Carboxyfluorescein *N*-succinimidyl ester (10 mM) was reacted with HSA with a maleimide group (150  $\mu$ M) in PBS for 2 h at 25 °C, and the products were then purified by dialysis (MWCO: 12-14 kDa) in PBS at 4 °C. The number of fluorescein molecules introduced to a single HSA was determined to be 4.6 based on UV-vis absorption spectra (V-550, Jasco). Modification of the fluorescently labeled HSA with peptides was performed according to the aforementioned procedure.

**SPR measurements.** The films composed of the target PNIPAM and isotactic poly(methyl methacrylate) (it-PMMA,  $M_n = 35500$ ,  $M_w/M_n = 1.12$ , mm : mr : rr = 98 : 2 : 0, synthesized following conventional living anionic polymerization<sup>5</sup>) as a reference polymer were applied for SPR measurements using a Biacore X (GE healthcare) according to our previously published protocol.<sup>6</sup> The PNIPAM and it-PMMA films with a thickness of approximately 15 and 10 nm, respectively, were prepared on gold-coated glass slides (SIA Kit Au, GE Healthcare) by spin-casting (2000 rpm, 1 min). HBS-N (10 mM HEPES, 150 mM NaCl; pH 7.4, GE Healthcare) was flowed at a rate of 20 µL min<sup>-1</sup> at 20 °C. After stabilization of the baselines by the HBS-N flow, the peptide solutions in HBS-N were applied to the films during 0 - 180 s (association), and then the peptide-free HBS-N was flowed during 180 -1000 s (dissociation). The resulting sensorgrams at four peptide concentrations were analyzed using the global fitting of BIAevaluation software version 4.1. The chi-square ( $\chi^2$ ) values were evaluated to be 1.3, 1.8, and 0.7 (an index of fitting reliability) for the c2 peptide against the PNIPAM films, the c2 peptide against the it-PMMA films, and the inverted c2 peptide against the PNIPAM films, respectively. The  $\chi^2$  values of less than 10 are considered to be acceptable according to the BIAevaluation handbook. In the case of the SPR measurements of peptide-modified HSA or native HSA against the PNIPAM films, the association  $(k_1)$  and dissociation  $(k_1)$  rate constants were determined by plotting the observed rate constant ( $k_{obs}$ ) using the following linear function:  $k_{obs} = k_1 C + k_{-1}$ , where C represents the protein concentration.

**Lower critical solution temperature (LCST) measurements.** Two PNIPAMs with different meso diad content (meso-rich PNIPAM:  $M_n = 7600$ ,  $M_w/M_n = 1.15$ , m : r = 58: 42; meso-poor PNIPAM:  $M_n = 13000$ ,  $M_w/M_n = 1.12$ , m : r = 17:83) synthesized by living anionic polymerizations<sup>1</sup> were used for the LCST measurements. Aqueous PNIPAM solutions (0.5 mg mL<sup>-1</sup>) with or without 880 µM of peptides were incubated for 1 h at 20 °C.

The turbidity of the solutions derived from transmittance at 500 nm using a 2 mm-thick quartz cell was monitored using a UV-vis spectrophotometer (V-550, Jasco) during heating of the solutions from 20 °C to 50 °C at a heating rate of 0.1 °C min<sup>-1</sup> without stirring. The LCSTs were determined as the temperature of 50% transmittance.

**Circular dichroism (CD) spectra.** The CD spectra of the peptide-modified HSA and native HSA dissolved in phosphate-buffer solutions (10 mM phosphate, pH 7.5) at a concentration of 1.7  $\mu$ M were recorded on a CD spectrometer (J-725, JASCO) under a N<sub>2</sub> atmosphere at 20 °C using a quartz cell with a thickness of 0.2 cm. The data represents the average of four scans in the wavelength range of 190-260 nm with a resolution of 0.5 nm and a scanning speed of 50 nm min<sup>-1</sup>.

**Thermoresponsive precipitation of HSA with PNIPAM.** Aqueous solutions of meso-rich PNIPAM (2.0 mg mL<sup>-1</sup>, 100  $\mu$ L) containing fluorescently labeled HSA (100 nM) with or without peptide modification were incubated for 20 min at 20 °C and were heated to 50 °C at a heating rate of 0.1 °C min<sup>-1</sup> using a thermal cycler (PC-320, ASTEC). The heated solutions were incubated for 30 min at 50 °C and were centrifuged (12100 *g*, 30 min) at 50 °C. Then, 15  $\mu$ L of the supernatants were diluted by 5 times. The fluorescence intensities at 525 nm (peptide-modified HSA) or 521 nm (non-modified HSA) excited at 496 nm were recorded on a fluorescent spectrophotometer (FP-6500, Jasco) at 25 °C to quantify the amount of HSA in the supernatants.

| PNIPAM    | LCST (°C) <sup>a</sup> |                     |              |
|-----------|------------------------|---------------------|--------------|
|           | C2 peptide             | Inverted c2 peptide | Peptide (-)  |
| Meso-rich | $36.2\pm0.0$           | $38.3 \pm 0.1$      | $38.3\pm0.2$ |
| Meso-poor | $38.3\pm0.1$           | $38.1\pm0.1$        | $38.1\pm0.0$ |

**Table S1** The LCSTs of PNIPAMs in the presence or absence of peptides

<sup>*a*</sup>LCSTs and their standard deviations were obtained from triplicate experiments.



Fig. S1 Percent yields (input/output phages) against the rounds of peptide screening.



**Fig. S2** Bound amounts of the screened phages against the PNIPAM films at (a) 20 °C and (b) 30 °C. Bound amounts and their standard deviations were obtained from triplicate experiments.



**Fig. S3** SPR sensorgrams for the binding of (a) the c2 peptide to the it-PMMA films, and (b) the inverted c2 peptide to the target PNIPAM films at different peptide concentrations.



Fig. S4 MALDI-TOF-MS spectra of the peptide-modified HSA and native HSA.



Fig. S5 CD spectra of the peptide-modified HSA and native HSA.



Fig. S6 SPR sensorgrams for the binding of (a) peptide-modified HSA and (b) native HSA to the target PNIPAM films at different protein concentrations. (c) Plots of the  $k_{obs}$  of peptide-modified HSA and native HSA for the PNIPAM films as a function of the protein concentration.

**Table S2.** Kinetic parameters for binding of peptide-modified HSA and native HSA to the PNIPAM films

| Protein              | $k_1 (10^3 \text{ M}^{-1} \text{ s}^{-1})$ | $k_{-1} (10^{-4} \text{ s}^{-1})$ | $K_{\rm a} (10^7{ m M}^{-1})$ |
|----------------------|--------------------------------------------|-----------------------------------|-------------------------------|
| Peptide-modified HSA | 16                                         | 3.7                               | 4.4                           |
| Native HSA           | 6.3                                        | 24                                | 0.26                          |



Fig. S7 Percent precipitation of the peptide-modified HSA in the presence or absence of 50  $\mu$ M free peptides.



**Fig. S8** Percent precipitation of the peptide-modified HSA at an HSA concentration of 10 nM.

## References

- 1 M. Ito and T. Ishizone, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 4832-4845.
- 2 T. Serizawa, T. Sawada, H. Matsuno, T. Matsubara and T. Sato, *J. Am. Chem. Soc.*, 2005, **127**, 13780-13781.
- 3 T. Serizawa, H. Fukuta, T. Date and T. Sawada, Chem. Commun., 2016, 52, 2241-2244.
- 4 W. C. Chan and P. D. White, in *Fmoc Solid Phase Peptide Synthesis* eds. W. C. Chan and P. D. White, Oxford University: New York, 1st edn., 2000, pp. 41-76.
- 5 K. Hatada, K. Ute, K. Tanaka, Y. Okamoto and T. Kitayama, *Polym. J.*, 1986, **18**, 1037-1047.
- 6 T. Serizawa, T. Sawada and H. Matsuno, *Langmuir*, 2007, 23, 11127-11133.